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1. INTRODUCTION 

Driver inattention, the primary cause of accidents [1-3], 

presents a significant challenge that can effectively be mitigated 

by driving assistance systems [4]. These advanced systems have 

the potential to significantly reduce the incidence of accidents 

caused by human error in both urban and rural environments, 

offering a promising outlook for road safety [5]. The foundation 

of the advanced driver assistance systems (ADAS) solutions lies 

in selecting the appropriate controller tailored to the level of 

automation that we plan to integrate into the vehicle [6, 7]. 

Trajectory tracking is critical to modern driving assistance 

systems [8]. It provides two essential functions: planning a 

feasible trajectory and providing the necessary control input that 

keeps the vehicle on the trajectory while meeting safety and 

comfort requirements [9].  

Two kinds of approaches are used to produce a reliable and 

efficient trajectory-tracking algorithm [10]:  

• End-to-end framework that combines the planning and 

control tasks in one function using reinforcement learning 

techniques.  

• Hierarchical framework that proposes planning and control 

tasks in separate modules. The former module focuses on 

global and strategic decisions, while the latter specializes in 

operative manoeuvres. 

In the Hierarchical approach, we will assume that the 

reference trajectory is given by the path planning module, it 

includes complete information about the desired vehicle state 

based on vehicle and environment limitations at every time 

frame. Therefore, the controller module of the ADAS system 

takes over and calculates a series of actions that the vehicle 

system should execute to reach the goals set by the high-level 

module. These operations are repeated during the vehicle's 

motion until it attains its destination [11-14].  

In this process, the choice of the controller is a critical task 

since it's supposed to take the vehicle's state as input and produce 

the necessary and adequate actions to ensure that the car follows 

the local path accurately and safely.  

Various approaches have been developed to address the task 

of trajectory tracking, including proportional-integral-derivative 

(PID), linear quadratic regulator (LQR), and model predictive 

control (MPC). These control strategies are well-regarded for 

their robustness and efficiency in solving trajectory-tracking 

problems [15, 16]. However, PID controllers are unsuitable for 

multi-input multi-output (MIMO) systems, and LQR controllers 

struggle to handle systems operating under constraints or 

exhibiting nonlinear behaviour [17, 18]. 

In contrast, MPC utilizes a mathematical model of the system to 

predict its future states. It selects the first control input from the 

calculated sequence before iterating this process until the desired 

final state is achieved. A pivotal element of the MPC framework 

is the trajectory tracking optimization (TTO) method, which 

determines optimal control inputs at each iteration. This method 
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addresses challenges in complex, high-dimensional systems by 

optimizing a performance index while ensuring compliance with 

system constraints, enabling dynamically feasible motion [19, 

20]. 

To solve the continuous TTO problem, both direct and 

indirect methods have been proposed, particularly in the context 

of autonomous vehicles (AVs) [21]. This study focuses on a 

direct transcription approach, which involves discretizing state 

and control trajectories over time. This process reformulates the 

original problem into an augmented representation based on 

trajectory values at discrete points (knots), with constraints 

imposed to enforce system dynamics between these knots. A 

nonlinear programming (NLP) solver is then employed to solve 

the transcribed optimization problem. 

In this work, we will evaluate the effectiveness of direct 

methods, particularly the transcription scheme used to convert 

the continuous TTO formulation into a discrete one. Specifically, 

we analyze the performance of two widely used methods: direct 

multiple shooting (DMS) and direct orthogonal collocation 

(DOC), within realistic scenarios simulated in Carla [22]. 

Typically, DOC is implemented using a derivative formulation 

with non-uniform collocation points across each time step of the 

MPC horizon.  

Furthermore, this study aims to enhance the DOC method by 

employing a cumulative integral form combined with a uniform 

distribution of collocation points, low-order polynomial 

interpolation, and shorter MPC time steps. These adjustments 

aim to reduce instability and align the performance with the 

classical DOC and DMS methods. We named the resulting 

method the implicit multiple shooting direct collocation method 

(IMSDOC). 

The primary goal of this study is to enhance the trajectory-

tracking performance of autonomous vehicles using a nonlinear 

MPC framework. The trajectory tracking problem is modelled 

using the kinematic bicycle model, which captures key vehicle 

dynamics with moderate complexity. Additionally, we will 

investigate the effectiveness of a nonlinear optimization 

algorithm, specifically the interior-point method implemented in 

the interior-point solver [23], to resolve the nonlinear problem 

resulting from the transcription process.  

While direct transcription offers significant advantages, it 

also presents notable challenges. One major drawback is the 

increased size of the resulting NLP problem, which leads to high 

computational demands. Additionally, the solution's accuracy is 

critical, as the system's behaviour is only approximated between 

knots. This limitation can render the generated plans infeasible 

in real-world applications. Thus, evaluating the impact of 

dynamic constraints, the number of discretization nodes, and the 

choice of NLP solvers on the solution's accuracy and quality is 

crucial. However, this study doesn't claim that it will conduct a 

detailed evaluation of the selected methods. Instead, it will 

demonstrate the effectiveness of the IMSDOC method in realistic 

driving scenarios using the Carla simulator, focusing on 

computational time, solution feasibility, and tracking error 

metrics. 

To cover all these topics, the paper is organized into several 

sections. The material and methods section will focus on 

formulating the tracking trajectory problem as a continuous-time 

TTO problem. Then, delve into the transcription process by 

covering the DMS, DOC, and IMSDOC methods. It will end by 

presenting the ecosystem used in this study, namely the 

modelling language, optimization algorithm, and simulation 

environment configuration and setup. The result section will 

graphically show the simulation outcomes and validation steps 

reinforced by the necessary comments and analysis. Finally, we 

will conclude with an overall assessment of this work and outline 

future perspectives. 

 

2. MATERIAL AND METHODS 

2.1. Trajectory Tracking Problem Formulation  

To build a mathematical model for the tracking problem in 

the context of autonomous driving, we must choose the model of 

the vehicle from several possibilities including a two or four-

wheel model with kinematic or dynamic behaviour. Assuming a 

soft driving behaviour, we have selected the kinematic bicycle 

model. 

 

2.1.1. Kinematic bicycle model 

As illustrated in Figure 1, the directional wheel of the vehicle 

is located at point A in the middle of the front axle.  

 
Fig. 1. Kinematic bicycle model.   

The centre of this wheel plays also the role of the origin of 

the local referential frame attached to the vehicle's body. We 

limited the car displacement to a planar and non-holomorphic 

motion described by global coordinates (x,  and y) at every time 

frame. Let 𝑣 be the longitudinal speed, 𝜓 the heading angle, 𝛿 the 

steering angle controlling the orientation of the fronted wheel 

with respect to the baseline direction, and 𝑎 longitudinal 

acceleration of the vehicle. We also supposed that for a moderate 

rolling speed, the dynamic effects of external forces, such as 

aerodynamic friction and road friction, acting on the car's body, 

particularly on its wheels, would become negligible.  

 

2.1.2. Vehicle dynamics 

Based on all the above and by applying the basic principle of 

kinematic, we obtained the system of equations that describes the 

dynamic of the vehicle as in Equation (1). 
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Ẋ = 𝑓(𝑋, 𝑈) =

{
 
 

 
 
�̇� = 𝑣 cos(𝜓 + 𝛿)

�̇� = 𝑣 sin(𝜓 + 𝛿)

�̇� =
𝑣

𝐿
sin(𝛿)

�̇� = a

                             (1) 

With 𝑋 = [𝑥,  𝑦,  𝜓,  𝑣]𝑇 the vehicle state vector, 𝑈 = [𝛿,  𝑎]𝑇 the 

control input vector, and 𝑓(𝑋,  𝑈)  a multivariate nonlinear 

function representing the car's dynamic during longitudinal and 

lateral movement. 𝐿 is the baseline length of the vehicle. 

 

2.1.3. Continuous tracking trajectory problem 

Let 𝒯 be the reference trajectory generated by the path 

planning module. This trajectory is a continuous set of targeted 

states 𝑋𝑟(𝑡) which the ego vehicle must reach with a minimal 

tracking error defined by Equation (2). 

𝜖  =  𝑋(𝑡)  −  𝑋𝑟(𝑡)                                                                         (2) 

    We also used a Lagrange form of the cost function in Equation 

(3) that quantifies the trajectory’s tracking performance: 

J = ∫ ϵ(𝑡)𝑇𝑄ϵ(𝑡)
𝑡𝑓

𝑡0

+ U(𝑡)𝑇RU(𝑡)dt                                           (3) 

With 𝑄 a positive definite matrix and 𝑅 a semi-definite positive 

matrix. The tracking problem can be now formulated as a 

continuous optimization problem in which the goal is to calculate 

efficiently the most favourable sequence of viable states and 

admissible control inputs (𝑋∗,  𝑈∗) by solving the problem 

described by Equations (4) to (7).  

min
𝑋, 𝑈

   𝐽                                                                                               (4) 

Subject to:  

    𝑋(0)  = 𝑋0                                                                                  (5) 

    �̇�(𝑡) = 𝑓(𝑋(𝑡), 𝑈(𝑡), 𝑡)                                                           (6) 
    𝑋(𝑡) ∈ 𝒳,  𝑈(𝑡) ∈ 𝒰                                                                (7)                                                              

𝒳  is the set of feasible states and 𝒰 is the set of admissible 

control inputs. 

 

2.2. Transcription of the Continuous Optimization Problem  

      To tackle the problem Equations (4) to (7), we utilize direct 

transcription, which involves discretizing the trajectory-tracking 

problem before optimizing control inputs. We explore two 

standard methods: direct multiple shooting (DMS) and direct 

orthogonal collocation (DOC). Both techniques have been 

widely used in continuous optimization problems. Direct 

multiple shooting divides the time horizon into shoots and 

defines control inputs and state variables at shoot boundaries. 

The optimizer then calculates optimal control inputs and state 

trajectories that adhere to system dynamics and constraints. 

Direct orthogonal collocation, on the other hand, uses collocation 

points to enforce system dynamics. The optimizer determines 

optimal inputs and trajectories that satisfy constraints at these 

points. Both approaches are thoroughly investigated and used in 

transcribing analogous continuous optimization problems. In this 

section, we’ll outline the essential implementation steps for these 

methods before addressing the optimization problem. 

2.2.1. Direct multiple shooting techniques 

The direct shooting method (DMS) is a numerical technique 

commonly used to solve optimal control and state estimation 

problems in dynamic systems. When applied to trajectory 

tracking problems using MPC, the process involves: 

a) Discretization of the horizon T: The horizon T is equally 

segmented into 𝑁 shoots (subintervals) [𝑡𝑛, 𝑡𝑛+1]𝑛=0,…,𝑁−1 at 

each MPC iteration. On each shoot 𝑛, we define the following 

first-order ordinary differential equation (ODE) �̇�𝑛(𝑡)  =

 𝑓(𝑋𝑛(𝑡),  𝑈𝑛(𝑡)) 
b) Solving the ODE: We then solve these ODEs on each shoot 

independently, using the explicit fourth-order Runge-Kutta 

method to obtain the state of the system 𝑋𝑛(𝑡). The initial 

conditions are treated as free variables determined by the 

optimization process. 

c) Imposing continuity at shoot’s boundaries: To ensure 

continuity of the system state between successive shoots, we 

impose matching conditions such that 𝑋𝑛(𝑡𝑛+1) =
𝑋𝑛+1(𝑡𝑛+1) ∀; 𝑛 = 0,… , 𝑁 − 1. This transformation turns the 

initial problem into a large-scale optimization problem, where we 

simultaneously optimize the state and control variables for all 

shoots 

d) Discrete optimization problem formulation: This involves 

converting the optimal control problem into minimizing a cost 

function evaluated at specific time points. Constraints are 

imposed at these discrete time points to ensure adherence to 

system dynamics, continuity conditions, and feasibility 

requirements, which leads to the problem described below:  

min
𝑋0,𝑈0,…,𝑋𝑁,𝑈𝑁−1

∑(𝜖𝑛
𝑇𝑄𝜖𝑛 + 𝑈𝑛

𝑇𝑅𝑈𝑛)

𝑁−1

𝑛=0

+ 𝑋𝑁
𝑇𝑄𝑓𝑋𝑁                  (8) 

Subject to:  

    𝑋0 = 𝑋𝑟,0                                                                               (9) 
𝑋𝑛+1 − 𝑋𝑛 = 𝑅𝐾4(𝑋𝑛, 𝑈𝑛),  ∀𝑛 = 0,… ,𝑁 − 1       (10) 

    𝑋𝑛 ∈ 𝒳,  ∀𝑛 = 0,… ,𝑁                                                  (11) 
    𝑈𝑛 ∈ 𝒰,  ∀𝑛 = 0,… ,𝑁 − 1                                          (12) 

 

2.2.2. Direct orthogonal collocation method 

The direct orthogonal collocation approach begins by 

dividing the MPC horizon into N particular instants called knots. 

Then it introduces an M collocation point between successive 

knots and finally approximates the vehicle's state and control 

input using an orthogonal polynomial function, Lagrange 

polynomial in our cases. The details of its implementation are 

listed below: 

a) Segmentation of the horizon T: The MPC horizon is 

divided into 𝑁 disjointed segments, and at each of them, we 

introduce 𝑀 collocation points and define a list of vehicle’s state 

�̃�𝑛 that belongs to this subinterval, such that �̃�𝑛 =

[𝑋𝑛,0,  𝑋𝑛,1, … ,  𝑋𝑛,𝑀−1]. Considered a control input on each 

segment and is represented by the vector 𝑈𝑛 for 𝑛 = 0, . . , 𝑁 − 1. 

b) Elaborating collocation equations: Firstly, we interpolate 

the vehicle state with Lagrange polynomial ℓ𝑛,𝑚(𝑡) and use a 

piecewise constant input control:   
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𝑋𝑛(𝑡) ≈ 𝑝𝑛(𝑡, �̃�𝑛) = ∑ 𝑋𝑛,𝑚
𝑀
𝑛=0 ℓ𝑛,𝑚 (

𝑡−𝑡𝑛

𝑡𝑛+1−𝑡𝑛
)                     (13) 

Un = 𝑐𝑡𝑒 ∀ 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1]                                                          (14) 

Then we build the collocation equations as a constraint set:   

�̇�𝑛(𝑡𝑛,𝑚, �̃�𝑛) = 𝑓(𝑋𝑛,𝑚, 𝑈𝑛)  ∀ (𝑛,𝑚)                                       (15) 
 

c) Development of the discrete optimization problem: The 

optimal control problem is reformulated into a nonlinear 

optimization problem (NLP), where the objective is to minimize 

an objective function like that used in DMS under the constraints 

imposed by the collocation equations and possibly additional 

constraints on the system states or control inputs that leads us to 

the discrete nonlinear optimization problem presented in 

Equations (16) to (20): 

 

2.2.3. Direct orthogonal collocation with implicit multiple 

shooting method 

This technique used the same polynomial as his precedent to 

interpolate the decision variables of the continuous optimization 

problem. However, instead of approximating the vehicle state, it 

estimates the vehicle dynamics according to Equation (21). 

�̇�𝑛(𝑡) = ∑{𝑓(𝑋}𝑛,𝑚, 𝑈𝑛)l𝑛,𝑚 (
𝑡 − 𝑡𝑛

𝑡𝑛+1 − 𝑡𝑛
)

𝑀

𝑚=0

                           (21) 

The collocation set of equations becomes: 

𝑋𝑛,𝑚 = 𝑋𝑛,0  +∑𝑎𝑛,𝑘𝑓(𝑋𝑛,𝑘 , 𝑈𝑛)

𝑀

𝑘=0

 ∀𝑚 = 1,… ,𝑀           (22) 

With 𝑎𝑛,𝑘 = ∫ ℓ𝑛,𝑘 (
𝑡−𝑡𝑛

𝑡𝑛+1−𝑡𝑛
) 𝑑𝑡

𝑡𝑛,𝑚
𝑡𝑛,0

. 

The Equation (22) seems like using an implicit multiple-

shooting technique. The resulting discrete optimization problem 

becomes as described by Equations (23) to (27): 

min
𝑋,𝑈

{∑ (∑ 𝜖𝑛,𝑚
𝑇 𝑄

𝑀−1

𝑚=0

𝜖𝑛,𝑚 + 𝑈𝑛
𝑇𝑅𝑈𝑛)

𝑁−1

𝑛=0

+ 𝑋𝑁
𝑇𝑄𝑓𝑋𝑁}           (23) 

Subject to:   

  𝑋0,0 = 𝑋𝑟,0                                                                                    (24) 

  𝑋𝑛,𝑚 = 𝑋𝑛,0 +∑ α𝑘𝑓(𝑋𝑛,𝑘, 𝑈𝑛)
𝑀
𝑘=0 ,  ∀(𝑛,𝑚)                  (25) 

𝑋𝑛,𝑚 ∈ 𝒳,  ∀(𝑛,𝑚) ∈ [0,𝑁 − 1] × [0,𝑀 − 1]                (26) 

  𝑈𝑛 ∈ 𝒰,  ∀𝑛 ∈ [0, … , 𝑁 − 1]                                                (27) 

3. SIMULATION ECOSYSTEM AND SETUP 

Solving the optimization problem generated by the 

transcription methods requires specialized numerical software 

and hardware. 

 

3.1. Hardware and Software Configuration  

3.1.1 Hardware  

The simulation will be run on a computer equipped with a 

quad-core Intel processor clocked at 2.5 GHz, with 24 GB of 

RAM and an Nvidia MX230 GPU. 

 

3.1.2 Software Configuration 

We conducted the simulation for the transcribed TTO 

problem using the Julia programming language [24] due to its 

speed, efficient resource management, and optimization 

capabilities. We utilized the JuMP framework to symbolically 

formulate the optimization TTO problem [25] and employed the 

Ipopt.jl package, which provides a wrapper for the interior point 

algorithm implemented in the interior point C++ solver, to solve 

it. For a graphical representation of the simulation outcomes, we 

used the Plots.jl and CairoMakie.jl libraries [26, 27]. 

Additionally, to use Carla within the Julia programming 

environment, we incorporated the PyCall.jl package [28]. 

 

3.2. Simulation 

To solve the tracking trajectory problem, we have conducted 

the simulation process in two stages. 

 

3.2.1. Numerical simulation stage 

At this stage, we have conducted a numerical simulation 

using the NMPC algorithm. We established a reference horizon 

and performed an optimization process to determine the optimal 

control inputs, which we then applied to a model plant using the 

Runge-Kutta method. This allowed us to update the vehicle state 

iteratively until we reached the end of the reference trajectory. 

The results of this simulation are presented in the first part of the 

results section. 

 

3.2.2. Realistic simulation in Carla 

To validate and test the robustness of our model, we used the 

Carla simulator for the same trajectory as in the numerical 

simulation. The results of these simulations are presented in the 

second part of the results section. It is important to note that we 

changed the architecture of the controller to align with the input 

controls of the Carla vehicle. We implemented a hierarchical 

low-level controller consisting of two integrated modules. The 

first module is a nonlinear model predictive controller, which 

computes the desired control inputs, such as the steering angle 

and longitudinal acceleration. The second module uses the 

Ackermann PID controller implemented in the Carla Python 

application programming interface, which operates at the level of 

the Carla vehicle actuators, takes the outputs from the NMPC 

controller, along with the desired vehicle velocity calculated 

from the dynamics of the plant model, and generates the 

necessary commands to ensure the motion of the Carla vehicle 

within the simulation environment. 

min
𝑋,𝑈

∑(∑ 𝜖𝑛,𝑚
𝑇 𝑄

𝑀−1

𝑚=0

𝜖𝑛,𝑚 + 𝑈𝑛
𝑇𝑅𝑈𝑛)

𝑁−1

𝑛=0

+ 𝑋𝑁
𝑇𝑄𝑓𝑋𝑁               (16) 

Subject to:  

    𝑋0 = 𝑋𝑟,0                                                                                 (17) 

    𝑓(𝑋𝑛,𝑚, 𝑈𝑛) = 𝑝�̇�(𝑡𝑛,𝑚, 𝑋𝑛,𝑚),  ∀(𝑛,𝑚)                         (18) 

    𝑋𝑛,𝑚 ∈ 𝒳,  (𝑛,𝑚) ∈ [0, … , 𝑁 − 1] × [0, … ,𝑀 − 1]    (19) 

    𝑈𝑛 ∈ 𝒰,  ∀𝑛 = 0,… ,𝑁 − 1                                               (20) 



H. Belkebir, T. Belkebir, Turk. J. Electromec. Energy, 9(3) 114-123 (2024)    

 

118 

 
Fig. 2. Hierarchical low-level controller general structure. 

3.3. Environment Setup  

3.3.1. Reference trajectory extraction   

Employed Carla simulator to extract the reference trajectory as 

presented in Figure 3. 

 
Fig. 3. Reference trajectory waypoints extracted from Carla. 

 

3.3.2 Simulation setup 

Utilized the listed parameters in Table 1 to configure the 

MPC algorithm and the interior point solver. 

Table 1. MPC and solver parameters configuration. 

MPC Algorithm Parameters Value 

Number of shoots/knots (N) 11 

MPC Time step  0.05/0.1 seconds 

Vehicle baseline length (L) 2.51 m 

Maximal steering wheel angle   70 degrees 

Maximal acceleration  4.9 m/𝑠2 

Horizon 0.55 s / 1.1 s 

Number of collocation points 3 

Solver parameters                                           Value 

Maximum number of iterations per MPC step 100 

4. RESULTS 

Throughout the first simulation stage, we ran a total of six 

simulations to assess the performance of the transcription 

schemes outlined in this paper. Figures 4 to 15 offer a 

comprehensive analysis of each transcription approach for time 

horizons of 0.55 seconds and 1.1 seconds, considering an average 

cruising speed of 10 m/s. 

 

4.1 Numerical Simulation Results  

The simulation results for the three transcription schemes 

previously introduced are organized into five categories: 

 The first category is Figures 4, 8 and 12 addresses the error in 

the vehicle's position and speed after applying the first control 

element calculated by the model predictive control (MPC) 

framework. 

 The second category is Figures 5, 9 and 13 evaluates the mean 

square error of the MPC predictions over the whole considered 

time horizon. 

 The third category is Figures 6, 10 and 14 focuses on the 

performance of the nonlinear solver used to optimize the 

trajectory that the vehicle must follow in accordance with the 

reference trajectory. 

 The fourth category is Figures 7, 11 and 15 presents the control 

elements applied to the vehicle to ensure it remains on the 

reference trajectory. 

 The final category Figure 16 (a, b, c) show how well the 

tracking trajectory is achieved in the case of MPC horizon 𝑇 =
1.1𝑠 for the three transcriptions schemes. 

 

 
Fig. 4.  Position error in the longitudinal direction for DMS 

transcription scheme: (a) horizon 𝑇 = 1.1 𝑠, (b) horizon 𝑇 =
 0.55 𝑠.  

 
(a) 
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(b) 

Fig. 5. States vehicle error on the whole horizon 𝑇 =  0.55 𝑠 

for the DMS transcription scheme: : (a) horizon 𝑇 = 0.55 𝑠, (b) 

horizon 𝑇 =  1.1 𝑠. 
 

 
Fig. 6. Interior point solver iterations / nonlinear MPC step for 

DMS transcription scheme: (a) horizon 𝑇 = 1.1 𝑠, (b) horizon 

𝑇 =  0.55 𝑠. 

 
(a) 

 
(b) 

Fig. 7. Controller performance for DMS transcription scheme: 

(a) horizon 𝑇 = 0.55 𝑠, (b) horizon 𝑇 =  1.1 𝑠. 

 

 
Fig. 8.  Position error in the longitudinal direction for DOC 

transcription scheme: (a) horizon 𝑇 = 1.1 𝑠, (b) horizon 𝑇 =  0.55 𝑠.  

 

 
(a) 

 
(b) 

Fig. 9. States vehicle error on the whole horizon 𝑇 =  0.55 𝑠 

for the DOC transcription scheme: (a) horizon 𝑇 = 0.55 𝑠, (b) 

horizon 𝑇 =  1.1 𝑠. 
 

 
Fig. 10. Interior point solver iterations / nonlinear MPC step for 

DOC transcription scheme: (a) horizon 𝑇 = 1.1 𝑠, (b) horizon 

𝑇 =  0.55 𝑠.  
 

 
(a) 

 
(b) 

Fig. 11. Controller performance for DOC transcription scheme: 

(a) horizon 𝑇 = 0.55 𝑠, (b) horizon 𝑇 =  1.1 𝑠. 
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Fig. 12.  Position error in the longitudinal direction for 

IMSDOC transcription scheme: (a) horizon 𝑇 = 1.1 𝑠, (b) 

horizon 𝑇 =  0.55 𝑠. 

 
(a) 

 
(b) 

Fig. 13 States vehicle error on the whole horizon 𝑇 =  0.55 𝑠 

for the IMSDOC transcription scheme: (a) horizon 𝑇 = 0.55 𝑠, 
(b) horizon 𝑇 =  1.1 𝑠. 

 
Fig. 14. Interior point solver iterations / nonlinear MPC step for 

IMSDOC transcription scheme: a horizon 𝑇 = 0.55𝑠., b. 

horizon 𝑇 = 1.1𝑠. 

 
(a) 

 
(b) 

Fig. 15. Controller performance for IMSDOC transcription 

scheme: (a) horizon 𝑇 = 0.55 𝑠, (b) horizon 𝑇 =  1.1 𝑠. 

 
(a) 

 
(b) 

 
(c) 

Fig 16. Trajectory tracking for horizon 𝑇 = 1.1𝑠: (a) DMS 

transcription scheme, (b) DOC transcription scheme, (c) 

IMSDOC transcription scheme. 
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4.2. Analysis and Discussion 

The numerical simulations conducted for the three 

transcription schemes mentioned above have successfully 

achieved their objectives. Each scheme effectively minimizes the 

discrete optimization problem with an average of 5 solver 

iterations per MPC step, as shown in Figures 4, 6, 8, 10, 12 and 

14.  Collocation methods exhibit greater precision in determining 

the control input, which is evident in Figures 11 and 15. 

However, these methods are relatively slower than the DMS 

method, which can be attributed to the differences in problem 

dimensionality between the two formulations. All three methods 

perform well in tracking the reference trajectory, as illustrated in 

Figures 16 (a, b) and (c). The root mean square error calculated 

across the entire horizon Figures 5, 9 and 13 between the targeted 

and predicted states for the three schemes is low and consistent, 

demonstrating the effectiveness of using a uniform distribution 

of collocation points.  

 

4.3 Results Validation 

The presented simulation results conducted in Carla for the 

same trajectory and simulation setup, focusing on the longest 

horizon simulation case and using DMS and IMSDOC 

transcription schemes respectively seen in Figure 17 to 19.  

 
(a) 

 
(b) 

Fig. 17. State error in the Carla simulator for horizon 𝑇 = 1.1 𝑠: 

(a) DMS transcription scheme, (b) IMSDOC transcription 

scheme. 

 
Fig. 18. Performance of the interior point solver in Carla 

simulator for horizon 𝑇 = 1.1𝑠: (a) DMS transcription, (b) 

IMSDOC transcription. 

 
(a) 

 
(b) 

Fig. 19. Controller performance in Carla simulator horizon 

T=1.1s: (a) DMS transcription, (b) IMSDOC transcription. 

4.4 Analysis and Discussion 

In Figure 17(b), absolute error in vehicle positioning using 

the Carla simulator demonstrates consistent performance, 

comparable to that of the DMS transcription scheme as shown in 

Figure 17(a). The longitudinal position errors remain below 1 

meter, indicating a reliable tracking capability. Additionally, the 

absolute errors in heading angle and speed are maintained at low 

levels.       

Figure 18(b) shows the performance of the nonlinear solver 

optimizer for the IMSDOC transcription scheme, highlighting its 

consistent efficiency as demonstrated in numerical simulations. 

However, the optimizer has an average overhead of 

approximately 60 iterations in certain segments of the desired 

trajectory. A similar observation applies to the DMS 

transcription scheme, as illustrated in Figure 18(a). This indicates 

the presence of instabilities that must be addressed and corrected 

in the kinematic bicycle model used during these simulations.  

Furthermore, the acceleration in Figure 19(a) and (b) is kept 

constant along the vehicle trajectory. This can be explained by 

the fact that the PID has shifted control over this parameter to the 

throttle and brake inputs. Consequently, the steering control 

inputs exhibit remarkable smoothness, with minimal oscillations 

across the two inspected transcription schemes in the Carla 

simulator. 

These findings strongly support our decision to implement a 

uniform distribution of collocation points paired with lower-

order interpolation polynomials, which proves to be a justified 

and effective approach to optimizing vehicle control. 
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4. CONCLUSION 

In this paper, we addressed a trajectory tracking problem for 

a vehicle equipped with a driver assistance system. Our primary 

objective was to develop a nonlinear model predictive controller. 

To achieve this, we first selected as the vehicle model the 

kinematic bicycle model on which the controller would operate.  

Next, we elaborated on the trajectory tracking problem, 

which enabled us to formulate a continuous nonlinear 

optimization problem. We then explored various transcription 

methods to generate a discrete version of this problem that could 

be implemented and solved on a digital computer. We focused 

on three techniques: the first was direct multiple shooting, the 

second was direct orthogonal collocation, and the third combined 

direct orthogonal collocation with implicit multiple shooting for 

which we employed a uniform collocation point distribution with 

low-order Lagrange polynomial interpolation for and a small 

MPC timestep in the latter method. 

For each technique, we generated an equivalent discrete 

optimization problem and subsequently entered the simulation 

phase, utilizing a solver based on the interior point method. The 

results indicated that all three methods were well-suited for this 

problem.  

To validate our findings, we also tested our controller within 

the CARLA simulation environment, which confirmed the 

efficiency of the MPC controller for this application. Although 

this work is still ongoing, we plan to implement this type of 

controller on embedded computers to evaluate their performance 

further. Additionally, we intend to compare the performance of 

these techniques with other orthogonal and non-orthogonal 

collocation methods, including trapezoidal collocation and 

Hermite-Simpson collocation. 
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