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ABSTRACT The purpose of this paper is to study free vibration analysis of thick plates resting 

on Winkler foundation using Mindlin’s theory with shear locking free fourth order finite element, 

to determine the effects of the thickness/span ratio, the aspect ratio, subgrade reaction modulus 

and the boundary conditions on the frequency parameters of thick plates subjected to free 

vibration. In the analysis, finite element method is used for spatial integration. Finite element 

formulation of the equations of the thick plate theory is derived by using higher order 

displacement shape functions. A computer program using finite element method is coded in C++ 

to analyze the plates as free, clamped or simply supported along all four edges. In the analysis, 17-

noded finite element is used. Graphs are presented that should help engineers designing of thick 

plates subjected to earthquake excitations. It is concluded that 17-noded finite element can 

effectively be used in the free vibration analysis of thick plates. It is also concluded that, the 

changes in the thickness/span ratio are more effective on the maximum responses considered in 

this study than the changes in the aspect ratio.  
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1. INTRODUCTION 

The plates resting on elastic foundation is one of the 

most popular topics for the last decade in many 

engineering application. Winkler model, Pasternak 

model, Hetenyi model, Vlasov and Leont’ev model are 

the models used by the researchers to calculate the soil 

effects on the plate.  

The dynamic behavior of thick plates has been 

investigated by many researchers [1, 2, 3, 4, 5]. In many 

cases, numerical solution can have lack of convergence, 

which is known as “shear-locking”. This problem can be 

avoided by increasing the mesh size, i.e. using finer 

mesh, but if the thickness/span ratio is “too small”, 

convergence may not be achieved even if the finer mesh 

is used for the low order displacement shape functions. 

In order to avoid shear locking problem, different 

methods and techniques, such as reduced and selective 

reduced integration, the substitute shear strain method, 

etc., are used by several researchers [6, 7, 8, 9, 10]. The 

same problem can also be prevented by using higher 

order displacement shape function [11]. Vibration 

analysis made by [12], they presented natural frequencies 

and modes of rhombic Mindlin plates. Özdemir and 

Ayvaz [13] studied shear locking free earthquake 

analysis of thick and thin plates using Mindlin’s theory. 

However, no references have been found in literature for 

the free vibration analysis of thick plates resting on 

Winkler foundation by using fourth order 17-noded finite 

element.  

The aim of this paper is to analyze eigenvalue 

analysis of thick plates resting on Winkler foundation 

using Mindlin’s theory with shear locking free fourth 

order finite element, to determine the effects of the 

thickness/span ratio, the aspect ratio, subgrade reaction 

modulus and the boundary conditions on the frequency 

parameters of thick plates with free vibration. In the study 

C++ computer program used for analyzing the plates 

which are free, clamped or simply supported along all 

four edges. In the code, the finite element method is used 

for spatial integration. Finite element formulation of the 

equations of the thick plate theory is derived by using 

fourth order displacement shape functions. In the 

http://www.scienceliterature.com/
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analysis, 17-noded finite element is used to construct the 

stiffness and mass matrices since shear locking problem 

does not occur if this element is used in the finite element 

modelling of the thick and thin plates [11]. For this 

element in the analysis no matter what the mesh size is at 

the plate unless it is less than 4x4. This is a new element, 

details of its formulation are presented in [11] and this is 

the first time this element is used in the free vibration 

analysis of thick plates. If this element is used in an 

analysis, it is not necessary to use finer mesh.  

 

2. MATHEMATICAL MODEL 

The governing equation for a flexural plate (Fig. 1) 

subjected to free vibration without damping can be given 

as; 
 

    ( ) 
 

     
     (1) 

 

where [K] and [M] are the stiffness matrix and the mass 

matrix of the plate, respectively, 𝜔 and 𝜔̈ are the lateral 

displacement and the second derivative of the lateral 

displacement of the plate with respect to time, 

respectively. 

The total strain energy of plate-soil-structure system 

(see Fig. 1) can be written as; 

 

П= ПP+ ПS+ V     (2) 
 

where ПP is the strain energy in the plate, 
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where ПS is the strain energy stored in the soil, 
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and V is the potential energy of the external loading; 
 

A
A

V qwd      (5) 
 

In this equation  EandE  are the elasticity matrix  

and q  shows applied distributed load. 

 

 

 

 

 

Fig. 1. The sample plate used in this study  

 

2.1. Creating of the Stiffness Matrix 

The total strain energy of the plate-soil system 

according to Eq. (2) is; 
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At this equation the first and second part gives the 

conventional element stiffness matrix of the plate, [kpe], 

differentiation of the third integral with respect to the 

nodal parameters yields a matrix, [kwe], which accounts 

for the axial strain effect in the soil. Thus the total energy 

of the plate-soil system can be written as; 
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Where;  
 

   Txnynn1x1y1e w...ww   (8) 

 

Assuming that in the plate of Fig. 1 u and v are 

proportional to z and that w is the independent of z, one 

can write the plate displacement at an arbitrary x, y, z in 

terms of the two slopes and a displacement as follows; 

 

ui={w, v, u}={w0(x,y,t), zφy (x,y,t), -zφx (x,y,t)}  (9) 
 

where w0 is average displacement of the plate, and φx and 

φy are the bending slopes in the x and y directions, 

respectively. 

The nodal displacements for 17-noded quadrilateral 

serendipity element (MT17) (Fig. 2) can be written as 

follows; 
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Fig. 2. 8- (second order), and 17-noded (fourth order) 

quadrilateral finite  elements used in this study 
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The displacement function chosen for this element is; 
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From this assumption, it is possible to derive the 

displacement shape function to be [11]; 
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Then, the strain-displacement matrix [B] for this 

element can be written as follows [13]: 
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The stiffness matrix for MT17 element can be 

obtained by the following equation [14]. 
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which must be evaluated numerically [10].  

As seen from Eq. (14), in order to obtain the stiffness 

matrix, the strain-displacement matrix, [B], and the 

flexural rigidity matrix, [D], of the element need to be 

constructed. 

The flexural rigidity matrix, [D], can be obtained by 

the following equation. 
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In this equation, [ kE ] is of size 3x3 and [ E ] is of 

size 2x2. [ kE ], and [ E ] can be written as follows [16, 

17]: 
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where E, υ, and t are modulus of the elasticity, Poisson’s 

ratio, and  the thickness of the plate, respectively, k is a 

constant to account for the actual non-uniformity of the 

shearing stresses. By assembling the element stiffness 

matrices obtained, the system stiffness matrix is 

obtained. 

2.2. Evaluation of the Mass Matrix 

The formula for the consistent mass matrix of the 

plate may be written as; 

 

 


dHHM i
T
i

                                                                 (17) 
 

In this equation,  is the mass density matrix of the 

form [Tedesco et al., 1999] 
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where m1=pt, m2=m3=  3
pt

12

1
 , and p is the mass 

densities of the plate, and Hi can be written as follows, 

 

  .17...1ihdy/dhdx/dhH iiii 
           (19) 

 

It should be noted that the rotation inertia terms are 

not taken into account. By assembling the element mass 

matrices obtained, the system mass matrix is obtained. 

 

2.3. Evaluation of Frequency of Plate 

The formulation of lateral displacement, w, can be 

given as motion is sinusoidal; 
 

w= W sin ωt                  (20) 
 

Here ω is the circular frequency. Substitution of Eq. 

(20) and its second derivation into Eq. (1) gives 

expression as; 
 

[K- ω2 M] {W}=0                (21) 
 

Eq. (21) is obtained to calculate the circular 

frequency, ω, of the plate. Then natural frequency can be 

calculated with the formulation below; 
 

f= ω /2π                  (22) 
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3. NUMERICAL EXAMPLES 

3.1. Data for Numerical Examples 

In the light of the results given in references [17, 18], 

the aspect ratios, b/a, of the plate are taken to be 1, 1.5, 

and 2.0. The thickness/span ratios, t/a, are taken as 0.01, 

0.05, 0.1, 0.2, and 0.3 for each aspect ratio. The shorter 

span length of the plate is kept constant to be 10 m. The 

mass density, Poisson’s ratio, and the modulus of 

elasticity of the plate are taken to be 2.5 kN.s2/m2, 0.2, 

and 2.7x107 kN/m2. Shear factor k is taken to be 5/6. The 

subgrade reaction modulus of the Winkler-type 

foundation is taken as 500 and 5000 kN/m3. 

Rather than starting from the finite element network 

size for the sake of correctness of the results, the network 

size required to achieve the desired accuracy is 

determined before delivering any results. This analysis 

was performed separately for the mesh size. It has been 

concluded that when using 4x4 mesh size 10 m x 10 m 

plate with 17-noded elements, the results have acceptable 

error. As in the case of the square plate, the lengths of the 

each element are kept constant in the x and y directions. 

In order to show that the mesh density used in this 

paper is enough to obtain correct results, the first six 

frequency parameters of the thick plate with b/a=1 and 

t/a=0.05 is presented in Table 1 by comparing with the 

result obtained SAP2000 program and the results Özgan 

and Daloğlu [2015]. In this study Özgan and Daloğlu 

used 4-noded and 8-noded quadrilateral finite element 

with 10x10 and 5x5 mesh size. It should be noted that the 

results presented for MT17 element are obtained by using 

equally spaced 2x2 mesh size. As seen from Table 1, the 

results obtained by using 17-noded quadrilateral finite 

element have excellent agreement with the results 

obtained by [18] and SAP2000 software even if 2x2 mesh 

size is used for MT17 element. 

 

3.2. Results 

The first six frequency parameters of thick plate 

resting on Winkler foundation with free edges are 

compared with the same thick plate modeled by [18] and 

SAP2000 program and it is presented in Table 1. The 

subgrade reaction modulus of the Winkler-type 

foundation for this example is taken to be 5000 kN/m3. 

This thick plate is modeled with MT17 element 2x2 mesh 

size for b/a=1.0, t/a=0.05 ratios.  

As seen from Table 1, the values of the frequency 

parameters of these analyses are so close even if this 

study mesh size is so poor. Then parameter such as aspect 

ratio, b/a, thickness/span ratio, t/a where taken in a wider 

range, and analyses were performed. 

 

Table 1.The first five natural frequency parameters of 

plates for b/a=0.1 and t/a=0.05 

λi=ω2 [18] 

PBQ8(FI) 

This Study 
SAP2000 

MT17 (4 element) 

1 3990.42 4002.41 4000.00 

2 3990.42 4002.41 4000.00 

3 4000.40 4021.55 4000.00 

4 8676.00 8650.67 8619.60 

5 13957.64 13789.50 13292.31 

6 17252.34 16939.10 16380.24 

Table 2. Effects of aspect ratio and thickness/span ratio 

on the first six frequency parameters of the thick free 

plates resting on elastic foundation 

Subgrade reaction modulus k=500 

k b/a t/a 
λ = ω2 

λ1 λ2 λ3 λ4 λ5 λ6 

5
0
0
 

1.0 

0.05 456.73 456.73 469.98 5048.72 10235.7 13366.9 

       

0.10 235.42 235.42 283.12 17448.0 37556.4 49322.0 

       

0.20 171.76 171.76 175.32 58681.1 126694. 164490. 

       

0.30 149.09 149.09 179.38 109100. 229933. 295362. 

        

1.5 

0.05 458.49 464.03 470.14 2492.94 2660.49 10937.2 

       

0.10 241.45 259.74 289.49 7970.41 8878.92 39117.9 

       

0.20 170.28 173.06 174.51 27346.7 31896.0 127052. 

       

0.30 153.01 163.56 183.08 52430.1 63261.4 225607. 

        

2.0 

0.05 459.37 466.66 470.22 1161 1588.82 5784.55 

       

0.10 244.46 271.13 292.64 3031.39 4557.16 20388.1 

       

0.20 169.53 171.92 174.46 10730.8 15546.2 68560.2 

       

0.30 154.97 170.85 184.92 22168.0 30127.2 126587. 

        

3.0 

0.05 460.25 468.61 470.30 603.44 951.50 1519.07 

       

0.10 247.47 281.97 295.67 825.36 2129.95 4437.42 

       

0.20 168.79 170.78 173.44 2333.89 6956.53 15815.4 

       

0.30 156.93 177.91 186.77 4859.98 13529.7 32166.7 

         

     The first six frequency parameters of thick plates 

resting on Winkler foundation considered for different 

aspect ratio, b/a, thickness/smaller span ratio, t/a, are 

presented in Table 2 for with free edges and in Table 3 

for the thick simply supported plates. To see the effects 

of these changes on the first six frequency parameters, 

they are also presented in Figures 3 for the thick free 

plates, in Figures 4 for the thick simply supported plates. 

As it can be seen from Tables 2, and 3, and Figures 3, 

and 4, the values of the first three frequency parameters 

for a constant value of t/a increase as the aspect ratio, b/a, 

increases up to the 3rd frequency parameters, but after the 

3rd frequency parameter, the values of the frequency 

parameters for a constant value of t/a decrease as the 

aspect ratio, b/a, increases. 

As also seen from Tables 2, and 3, and Figures. 3, and 

4, the values of the first three frequency parameters for a 

constant value of b/a decrease as the thickness/span ratio, 

b/a, increases up to the 3rd frequency parameters, but after 

the 3rd frequency parameters, the values of the frequency 

parameters for a constant value of b/a increase as the 

thickness/span ratio, t/a, increases. 

The increase in the frequency parameters with 

increasing value of b/a for a constant t/a ratio reduces for 

larger values of b/a up to the 3rd frequency parameters. 

After the 3rd frequency parameters, the decrease in the 

frequency parameters with increasing value of b/a for a 

constant t/a ratio reduces for larger values of b/a. 
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Table 3. Effects of aspect ratio and thickness/span ratio 

on the first six frequency parameters of the thick simply 

supported plates resting on elastic foundation 

Subgrade reaction modulus k=500 

k b/a t/a 
λ = ω2 

λ1 λ2 λ3 λ4 λ5 λ6 

5
0
0
 

1.0 

0.05 9047.4 53796. 53796. 132323. 208613. 208895. 

       

0.10 31594.4 186728. 186728. 431328.0 675755.9 678833.0 

       

0.20 100289. 524820. 524820. 1078904. 1617046. 1635881. 

       

0.30 177442. 817902. 817902. 1562458. 2233537. 2283380. 

       

1.5 

0.05 5015.82 17094.0 43388.9 54027.36 71060.68 133204.5 

       

0.10 17329.0 60561.6 154092. 188245.0 242603.2 436597.4 

       

0.20 57457.2 186916. 449433. 530921.1 658117.1 1095658. 

       

0.30 106026. 318024. 715938. 828749.9 1001294. 1585462. 

       

2.0 

0.05 3912.42 9138.54 23276.2 39998.98 54142.96 54143.89 

       

0.10 13407.9 32257.5 82636.3 143304.1 189004.4 189006.5 

       

0.20 45541.0 103507. 250665. 424221.4 533149.2 533974.8 

       

0.30 85976.3 183477. 417846. 682308.0 830510.8 834182.7 

       

3.0 

0.05 3220.63 5043.23 9169.12 17200.91 31325.02 37650.27 

       

0.10 10941.0 17534.1 32481.8 61320.90 111087.0 135748.4 

       

0.20 38015.9 58510.7 104603. 190395.9 330316.7 406397.0 

       

0.30 73378.6 108073. 185541. 324384.2 539235.3 658701.9 

 
 
 
 
 
 
 
 
 

 

          
 
 
 

 

 

 
 
 
 
 
 
 
 

Fig. 3. Effects of aspect ratio and thickness/span ratio 

on the first six frequency parameters (λ1 to λ6)   of the 

thick free plates with subgrade reaction modulus k=500,  

 

The changes in the frequency parameters with 

increasing value of b/a for a constant t/a ratio is larger for 

the smaller values of the b/a ratios. Also, the changes in 

the frequency parameters with increasing value of b/a for 

a constant t/a ratio is less than that in the frequency 

parameters with increasing t/a ratios for a value of b/a. 

These observations indicate that the effects of the 

change in the t/a ratio on the frequency parameter of the 

plate are generally larger than those of the change in the 

b/a ratios considered in this study. 

As it can also be seen from Tables 2, and 3, and 

Figures 3, and 4 that the curves for a constant value of b/a 

ratio are fairly getting closer to each other as the value of 

t/a increases up to the 3rd frequency parameters. This 

shows that the curves of the frequency parameters will 

almost coincide with each other when the value of the 

ratio of t/a increases more. After the 3rd frequency 

parameters, the curves for a constant value of t/a ratio are 

getting closer to each other as the value of b/a increases.  

In other words, up to the 3rd frequency parameters, the 

increase in the t/a ratio will not affect the frequency 

parameters after a determined value of t/a. After the 3rd 

frequency parameters, the increase in the b/a ratio will 

not affect the frequency parameters after a determined 

value of b/a. It should be noted that the increase in the 

frequency parameters with increasing t/a ratios for a 

constant value of b/a ratio gets larger for big values of the 

frequency parameters. 

These observations indicate that the effects of the 

change in the t/a ratio on the frequency parameter of the 

thick plates simply supported or clamped along all four 

edges are always larger than those of the change in the 

aspect ratio. 

 
 
 
 
      
 
     
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Effects of aspect ratio and thickness/span ratio 

on the first six frequency parameters (λ1 to λ6) of the 

thick simply supported plates with subgrade reaction 

modulus k=500,  
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4. CONCLUSION 

The aim of this article is to study the parametric 

eigenvalue analysis of thick plates using Mindlin theory 

using high-order finite elements and to determine the 

effects of thickness/ span ratio, aspect ratio and boundary 

conditions on the linear response of applied thick plates. 

As a result, free vibration analyze of the thick plates 

were done by using p version serendipity element, and 

the coded program on the purpose is effectively used. In 

addition, the following conclusions can also be drawn 

from the results obtained in this study. 

The frequency parameters increases with increasing 

b/a ratio for a constant value of t/a up to the 3rd frequency 

parameters, but after that those decrease with increasing 

b/a ratio for a constant value of t/a. 

The frequency parameters decreases with increasing 

t/a ratio for a constant value of b/a up to the 3rd frequency 

parameters, but after that those increases with increasing 

t/a ratio for a constant value of b/a. 

The effects of the change in the t/a ratio on the 

frequency parameter of the thick plate are generally 

larger than those of the change in the b/a ratios 

considered in this study. 
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