

Special Issue Article | ICADET 2017₺

Turkish Journal of Electromechanics & Energy

ISSN-2547-975X

₺Initial version of this paper was selected from the proceedings of International Conference on Advanced Engineering Technologies (ICADET 2017)
which was held in September 21-23, 2017, in Bayburt, TURKEY; and was subjected to peer-review process prior to its publication.

 Science Literature
 TM

© All rights reserved.

Contiki OS Usage in Wireless Sensor Networks

(WSNs)

Erhan Sesli
1*

, Gökçe Hacıoğlu
2

1 Sürmene Abdullah Kanca Vocational School of Higher Education, Karadeniz Technical University, Trabzon, Turkey
2 Department of Electrical and Electronics Engineering, Karadeniz Technical University, Trabzon, Turkey

Received: 26 October 2017; Revised: 2 December 2017; Accepted: 15 December 2017; Published: 30 December 2017

Turk J Electrom Energ Vol.: 2 No: 2 Page: 1-6 (2017)

SLOI: http://www.sloi.org/

*Correspondence E-mail: erhansesli@ktu.edu.tr

ABSTRACT Wireless Sensor Networks (WSNs) have very wide range of applications from

health to agriculture, from military technologies to observing of volcano activities. Developers

and engineers frequently need to simulate WSN to ensure developed applications work

successfully and to analyze effects of various configurations of wireless nodes. Simulating the

designed scenario and embedding the designed algorithms into the wireless modules effectively

are the important factors for the developers and engineers in this field. In this study, Contiki

Operating System is proposed as a convenient solution for developers and engineers. Contiki is

an open source, Linux based operation system, and developed for Internet of Things (IoT)

devices. In this paper, primarily, Contiki OS usage and advantages in WSN were explained, then

Contiki OS usage over a sample scenario was given and finally advantages of Contiki OS over

other popular operation systems such as Tiny OS and Lite OS were examined. Background

information on WSN and Contiki OS to build an example scenario for beginners were provided.

Keywords: Wireless Sensor Networks (WSNs), Contiki OS, Simulation

Cite this article: E. Sesli, G. Hacıoğlu, Contiki OS Usage in Wireless Sensor Networks (WSNs)

Turkish Journal of Electromechanics & Energy 2(2) 1-6 (2017)

1. INTRODUCTION

The identification layer of the modern information

processing system is completely related to the sensing

of six physical phenomena in nature such as;

mechanical, electrical, magnetic, thermal, radiation, and

chemical [1]. Importance of the sensing leads to develop

new approaches and systems in many fields. Wireless

Sensor Networks (WSNs) are regarded as a good

example to new developments and technologies in this

fields.

In recent years, WSNs find applications from health

to agriculture, military technologies to observing of

volcano activities which have vital importance at many

points [2, 3]. Many of the mentioned applications have

to operate in environmental conditions that are

stand-alone and energy-limited. Therefore, localization

algorithms [4, 5] and novel energy-efficient clustering

algorithms [6, 7] in WSNs have become popular field of

studies. Undoubtedly, factors such as system simulation

of WSN applications, making various configurations of

nodes and embedding the algorithms into wireless nodes

effectively are vital for developers. In the application

development phase of the WSNs, many interfaces and

programs can assist to the developers. One of the

appropriate solution is the usage of Contiki OS. Contiki

OS is an open-source operating system which is Linux

based and developed for Internet of Things (IoT)

devices [8]. It has also powerful tools for building

complicated wireless communication systems. Contiki

OS has been especially developed for low-powered

WSN apps. In other words, it has been developed for

WSN applications that are able to work with AA type

batteries for years. Another specific feature of the

Contiki OS is Cooja Network Simulator which provides

simulation environment for developed algorithms.

Contiki OS, which has an integrated structure through

these features, presents researcher based solutions for

WSN apps that may be developed.

In the next sections of the current paper, background

information is given about WSNs and Contiki OS, then

comparative assessments are provided between other

alternatives, finally advantages of usage of Contiki OS are

examined.

http://www.sloi.org/sloi-name-of-this-article
mailto:erhansesli@ktu.edu.tr

E. Sesli, G. Hacıoğlu, Turk. J. Electrom. Energ. 2(2) 1-6 (2017)

2

2. WIRELESS SENSOR NETWORKS (WSNs)

Main purpose of the WSNs is to sense variable physical

phenomena in a certain environment, then to transmit the

information through wireless network [2]. Basic working

mechanism of a WSN node is shown in Figure 1.

Fig. 1. Basic working mechanism of a WSN node.

A typical WSN node consists of a microprocessor, a

power unit and some blocks like I/O, analog to digital

converter (ADC), communication and memory block. WSNs

generally operate in environmental conditions that must be

stand-alone and energy-limited. Hence, power is often

provided by energy harvesting methods such as solar panels,

piezoelectric equipment etc. Power that is obtained by energy

harvesting methods might be used for recharging the batteries.

 In WSN, information is sensed by a node named as

end-device, that is often at the far point in network.

End-devices are manufactured as Reduced-Functioned

Devices (RFDs) and have simple tasks such as sensing analog

information and transmitting it. End-devices transmit

information to the more authorized node in network named as

Router. Routers are often manufactured as Full-Functioned

Devices (FFDs). FFDs have the ability to communicate with

other RFDs and FFDs. Router which is a FFD device can get

information from the adjacent node and transmit it to another

router or directly to the Coordinator. Coordinator which is the

most authorized node in network are manufactured as FFD.

Coordinator or in other words sink can be thought as the

gateway of the network. General architecture of a typical

WSN is shown through a scenario in Figure 2. [9].

Fig. 2. General architecture of the WSNs

In the scenario, fire incidence information that occurred in

a forest is sent to the end user through WSN and the internet.

Primarily, fire is sensed by a sensor which is mounted to the

end-device. Then, end-device transmits the information to the

neighbor router. Next, information is transmitted to the

coordinator by routers. After that, information which is

received by coordinator is transmitted to the internet and

finally the receiver gets the vital information through the

internet.

Applied standards for WSNs are determined via IEEE

802.15.4 [10]. There are various available manufacturer

solutions to develop applications in WSNs. Nevertheless,

some of the solutions are costly. Therefore, searching cost-

effective or cost-free solutions become important. On the other

hand, cost-effective or cost-free solutions do not have the

identical features, they have advantages/disadvantages over

each other.

3. CONTIKI OPERATING SYSTEM AND ITS

STRUCTURE

Contiki OS is an operating system which is developed by

Dunkel et al. [11]. Contiki OS, which is C programming

language based and open source, has been developed for

lightweight, flexible and low-powered wireless sensor

networks.

Working environments of the WSNs are often

energy-limited as mentioned. This is one of the most

important constraint for WSNs. Likewise, tiny and simple

designs of the nodes are the other constraints. For this reason,

WSNs should have some important hardware and software

features to cope with these constraints. Contiki OS is one of

the convenient solutions to cope with mentioned constraints

thanks to its flexibility and support of lightweight and low-

powered networks [11].

Fig. 3. Contiki network stack

A standard Contiki configuration for a microcontroller is

2kB RAM and 40 kB ROM. Besides that, Contiki can provide

communication over IPv4, IPv6 and Rime Network Stack

[12]. Contiki Network Stack shown in Figure 3. gives more

details for its structure.

Contiki directory in OS, also provides access to system

source codes, sample application codes, practical applications,

and driver codes for many node types, specific microcontroller

files and important tools like Cooja. Thus, besides developing

and simulating new projects, Contiki provides the opportunity

for developers to use existing samples directly or modify

them. With these features, researchers and developers would

have effective development environment.

3.1. Cooja Simulator Environment

Cooja is a WSN simulator which enables simulating the

developed applications. Thus, developers can make their own

applications through these codes, drivers and tools.

E. Sesli, G. Hacıoğlu, Turk. J. Electrom. Energ. 2(2) 1-6 (2017)

3

In Figure 4, a screenshot of Cooja environment is

provided. While node communication information is flowing

in colored screen which is in the middle window, node

communication directions and communication ranges of the

nodes can be seen on the left window.

Fig. 4. A screenshot of Cooja environment

3.2. An Example in Contiki OS

Explaining the usage of Contiki OS within an example

scenario will be useful for the new developers.

In the scenario three wireless nodes, one of the nodes is

receiver node and the others are the energy-limited transmitter

nodes, are included. Hence, transmitter nodes would sleep

with certain periods for energy saving.

For this kind of example, usage of the Rime Network

Stack is useful as it has a structure which makes the wireless

network communication easy. If rime directory which is in

Contiki OS directory is considered, codes for nodes can be

built by modifying the anonymous broadcast (abc) sample.

For communication of receiver and transmitter nodes in

given example, 25
th
 channel (2.475 GHz) which is defined in

IEEE 802.15.4 was preferred. Transmitter and receiver nodes

should be configured separately. For receiver node,

communication channel should be configured as 25
th
 channel

and RDC layer in Contiki Network Protocol Stack should be

configured as nullrdc. Required configurations can be carried

out by modifying the project-conf.h file which is in rime

directory. Modified project-conf.h file for receiver node is

given in Figure 5.

Fig. 5. Receiver node configuration

Built code for receiver node is shown in Figure 6. Code

lines that were defined by numbers include general and

important details for building a project in Contiki. Code line

numbers are explained as below;

 1- PROCESS is one of the most important component for

the Contiki. Processes are defined via PROCESS macros.

 2- AUTO_PROCESS starts PROCESS automatically via

the given arguments.

3- abc_recv is a function which is used to display received

messages. abc_recv() is designated as a callback function

and it is automatically called when a message is received.

 4- PROCESS_THREAD is used for proto thread of a

process.

 5- PROCESS_EXIT HANDLER specifies an action

when a process exits. In this example, quitting receiving

mode is an action.

 6- Beginning of the process is declared by

PROCESS_BEGIN macro. It must always be in the

PROCESS_THREAD definition.

 7- PROCESS_END macro is used for quitting from the

process.

Fig. 6. Code for receiver node

Transmitters are energy-limited nodes. They should sleep in

certain intervals for energy-saving. For this reason, channel

check rate of the transmitter nodes was determined as 8 times

in a second. Configuration of the channel check rate provides

the sleeping in certain intervals. Besides, since there are two

transmitter, there may be two signal in channel at the same

time. Accordingly, Radio Duty Cycle (RDC) layer in Contiki

Network Protocol Stack should be configured as contikimac.

Thus, transmitter initially listens to channel; if channel is idle

then it transmits its own signal. Required configurations for

these were made by changing project-conf.h file as seen in

Figure 7. Built codes for transmitter nodes are seen in

Figure 8.

Fig. 7. Transmitter node configuration

E. Sesli, G. Hacıoğlu, Turk. J. Electrom. Energ. 2(2) 1-6 (2017)

4

Fig. 8. Codes for transmitter node

A random time among 2-4 seconds was determined by

etimer_set (struct etimer*, clock_time_t) function. Thus, event

- timer was set up that time interval.

Process waits until an event occurs via

PROCESS_WAIT_EVENT_UNTIL (etimer_expired(&et))

function. When event-timer expires, event occurs and if

channel is idle, "Here I am" information is sent as a broadcast

message. Then, "message sent" information is written on

information screen.

Written codes for nodes in scenario were compiled and

scenario was built in Cooja environment. Screenshot of the

scenario that was carried out in Cooja environment is provided

in Figure 9.

 In Figure 9 instantaneously, sender ID2 transmits a

broadcast message. While receiver ID1 receives "Here I am"

information, sender ID3 waits until channel is idle. When

channel goes idle, sender ID3 transmits its own broadcast

message.

Fig. 9. Simulation in Cooja environment

In this section, general issues such as structure of the

Contiki and the usage of the Contiki have been explained. In

next section, other alternative WSN operating systems are

explained and differences between them are examined.

4. COMPARISON OF CONTIKI OS WITH

OTHER ALTERNATIVES

Other operating systems are also available for the

WSNs. Among these, it can be said that Tiny OS and

Lite OS are other most popular operating systems.

4.1. Tiny OS

TinyOS is a flexible and tiny operating system which

consists of reusable components. Commands, events, and

tasks are three computational abstractions of the components.

Commands and events are used for inter-component

communication. Tasks are as used to express intra-component

concurrency.

Typical TinyOS configuration for a microcontroller is 16

kB ROM and 400 bytes of RAM. TinyOS has component-

based programming model provided by NesC programming

language. NesC language which supports features such as

extensive cross-component optimizations and compile-time

race detection is used in TinyOS [13].

 4.2. LiteOS

LiteOS which is presented by Huawei is an

open-source, interactive and Unix-like operating system

for IoT devices. LiteOS is a tiny OS like others. It has

10 kB memory. As the architecture, it has three basic

component as LiteC compiler, OpenSC (Open Sensor

Classes) and the LiteOS runtime environment. LiteC

compiler is used for compiling codes from C++ to

machine language. OpenSC provides an API library to

ease software development. LiteOS runtime

environment presents process scheduling and resource

allocation.

LiteOS has the abilities such as supporting zero

configuration, auto-discovery, and auto-networking.

Detailed information about LiteOS can be obtained in

references [14, 15].

4.3. Comparison of Three Popular Operating Systems

 Comparison among these three operating systems is

shown in Table 1 [16].

When the Table 1 is examined, the following details

can be observed; all three operating systems are open-

source, and users can exploit them without any cost.

While Contiki OS and LiteOS have dynamic system,

TinyOS has the static system. In other words, Contiki

OS and LiteOS are good solutions for the environment

which is dynamically variable. In addition, they have

flexible structure for the developers. While Contiki OS

and LiteOS have the modular system, TinyOS has

monolithic system. With this aspect, Contiki OS and

LiteOS are more convenient for personal network

applications that need to be modified frequently. From

the point of network support view, Contiki OS has IPv4,

IPv6 and Rime network stacks. With this features, both

it is provided to communicate ability over internet for

Contiki OS and presented a lightweight network stack

via Rime for low-powered wireless networks. Contiki

OS makes difference with its own Protothread

mechanism which is a lightweight thread mechanism.

Lastly, all three operating systems have their own

network simulators as compared in Table 1. But Contiki

OS has three different alternatives which make itself

popular.

E. Sesli, G. Hacıoğlu, Turk. J. Electrom. Energ. 2(2) 1-6 (2017)

5

Table 1. Comparison table of the operating systems

4. CONCLUSION

In this study, primarily Contiki OS which is a

lightweight, open source operating system developed

for WSN application was reviewed. Then, an example

scenario through Cooja in Contiki OS was explained

step by step and finally a comparison with other popular

operating systems such as TinyOS and LiteOS was

carried out

If we scrutinize Contiki OS, it is obviously seen that it

has powerful tools for building complicated wireless

communication systems. Especially, Rime Network

Stack is very important as it presents a lightweight

network stack which is very convenient for low-

powered WSN’s. In addition, Protothread mechanism is

one of important factors which makes difference.

Likewise, flexible structure of Contiki OS and ability to

use in many WSN platforms like cc2538, skymote,

MicaZ, Zolertia Z1 etc. increase its preferability. This

study aimed to provide background information on WSN and

Contiki OS and to build an example scenario for

beginners.

Acknowledgement

This study was supported by Karadeniz Technical

University Scientific Research Projects Coordination

Unit under Grant No: FDK-2016-5410.

References

[1] G.C.M. Meijer, Smart Sensor Systems, Wiley,

Wiltshire, 55-57, (2008).

[2] D. Puccinelli, M. Haenggi, Wireless sensor

networks: applications and challenges of

ubiquitous sensing, IEEE Circuits and Systems

Magazine, 5(3), 19-31, (2005).

[3] Y. Karan, N. As, Electromagnetic radiation

measurement of a high gain wireless network

adapter. Turkish Journal of Electromechanics and

Energy, 1(2), 17-23, (2016).

[4] A. Pal, Localization algorithms in wireless sensor

networks: Current approaches and future

challenges, Network Protocols and Algorithms,

2(1), 45-73, (2010).

[5] G. Han, H. Xu, T.Q. Doung, J. Jiang, T. Hara,

Localization algorithm for wireless sensor

networks: A survey, Telecommunication System,

52(4), 2419-2436, (2013).

[6] M. Ye, C. Li, G. Chen, J. Wu, EECS: An energy

efficient clustering scheme in wireless sensor

networks, In Performance, Computing, and

Communications Conference, (IPCCC 2005) 24th

IEEE International, Arizona, USA, 535-540, April

(2005).

[7] G. Hacioglu, V.F.A. Kand, E. Sesli, Multi

objective clustering for wireless sensor networks,

Expert Systems with Applications, 59, 86-100,

(2016).

[8] Contiki: The open source operating system for the

internet of things, 2017, http://www.contiki-os.org/

[9] K. Akkaya, M. Younis, A survey on routing

protocols for wireless sensor networks. Ad hoc

Networks, 3(3), 325-349, (2005).

[10] IEEE Standards 802.15.4, (2017),

http://www.iith.ac.in/~tbr/teaching/docs/802.15.4-

2003.pdf

[11] A. Dunkels, B. Gronvall, T. Voigt, Contiki-a

lightweight and flexible operating system for tiny

networked sensors, 29th Annual IEEE

International Conference on Local Computer

Networks, Florida, USA, 455-462, Nov. (2004).

[12] Karadeniz Technical University, Engineering

Faculty, Department of Computer Engineering,

Computer Networks Laboratory, (2017),

http://www.ktu.edu.tr/dosyalar/bilgisayarce12e.pdf

[13] L. Philip et al., TinyOS: An operating system for

sensor networks, Ambient Intelligence, Springer,

35, 115-148, (2005).

[14] Q. Cao, T. Abdelzaher, J. Stankovic, T. He, The

LiteOS operating system: Towards unix-like

abstractions for wireless sensor networks, In

Information Processing in Sensor Networks,

IPSN'08. International Conference on IEEE, St.

Louis, Missouri, USA, 233-244, April (2008).

[15] Q. Cao, T. Abdelzaher, LiteOS: a lightweight

operating system for C++ software development in

sensor networks, In Proceedings of the 4th

International Conference on Embedded Networked

Sensor Systems, CO, USA, 261-262, Nov. (2006).

[16] T.V. Chien, H. N. Chan, T. N. Huu, A comparative

study on operating system for wireless sensor

networks, ICACSIS Conference on IEEE, Jakarta,

Indonesia, 73-78, December (2011).

Comparison Criterion Contiki OS 3.0 TinyOS 2.0 Huawei LiteOS

Source model Open source Open source Open source

System(Dynamic/Static) Dynamic Static Dynamic

System(Monolithic/Modular) Modular Monolithic Modular

Networking support IPv4, IPv6, Rime Active message File-Assisted

Programming language C NesC LiteC++

Multithreading support
Yes (have Protothread

mechanism)

Partial (through Tiny

Threads)

Yes

Simulator Cooja, MSPSim, Netsim TOSSIM, Power Tossim Through AVRORA

http://www.contiki-os.org/
http://www.ktu.edu.tr/dosyalar/bilgisayar_ce12e.pdf

E. Sesli, G. Hacıoğlu, Turk. J. Electrom. Energ. 2(2) 1-6 (2017)

6

Biographies

Erhan Sesli was born in 1983. He

received his B.Sc. degree in

Electrical and Electronics

Engineering from Karadeniz

Technical University in 2005,

Trabzon, Turkey. He worked in

private sector a couple of years as

telecommunication engineer. In

2012, he received his M.Sc. degree from Karadeniz

Technical University Graduate School of Natural and

Applied Sciences, Trabzon, Turkey. Erhan Sesli is

currently a Ph.D. student at Karadeniz Technical

University Graduate School of Natural and Applied

Sciences. His research interests include range-based

localization in wireless sensor networks (WSNs),

optimization, metaheuristic algorithms and intelligent

transportation systems.

E-mail: erhansesli@ktu.edu.tr

Gökçe Hacıoğlu received B.Sc.

degree in Electronics Engineering

from Karadeniz Technical University,

Trabzon, Turkey, in 2000, the M.Sc.

and Ph.D. degree in Electrical and

Electronics Engineering with majors

in wireless communication diversity

techniques from Karadeniz Technical

University Graduate School of Natural and Applied

Sciences, Trabzon, Turkey in 2005 and 2011,

respectively. His current research interests include

diversity methods, routing algorithms of wireless sensor

networks (WSNs), intelligent transport systems, visible

light and power line communications and their

applications in sensor networks.

E-mail: gokcehacioglu@ktu.edu.tr

mailto:erhansesli@ktu.edu.tr
mailto:gokcehacioglu@ktu.edu.tr

