Fig. 6. Classification flowchart of SC [44, 50, 52].

A Review on Supercapacitor Materials and Developments

Mustafa Ergin Şahin, Frede Blaabjerg, Ariya Sangwongwanich


Energy storage is a big problem today in the world for humanity depend on the challenges of conventional storage devices. So the researchers are studying to invent new energy storage devices and materials for many years.  The supercapacitor (SC) is invented and presented as an alternating storage device recently.  There were a lot of studies about SC in literature. These studies are focused on materials of SC components, modeling of SC, and applications of SC. In this paper, the working principle of SC, the advantages of SC, the classification of SC, and new developments of SC are investigated. Some material applications of SC are presented in this study also. The manufacturing developments are investigated for some SC materials and presented some novel applications also. 

Full Text:



M. E. Glavin, W. G. Hurley. Optimizations of a photovoltaic battery ultracapacitor hybrid energy storage system. Solar Energy 86(10) (2012) 3009-3020.

J. Ho, R. Jow, S. Boggs. Historical Introduction to Capacitor Technology. IEEE Electrical Insulation Magazine 26(1) (2010) 20–25.

J. G. Schindall, The Change of the Ultra-Capacitors, IEEE Spectrum November 2007.

D. L. Boos. US 3536963 patent, Electrolytic capacitor having carbon paste electrodes. issued 1970-10-27.

A. M. Namisnyk. A survey of electrochemical supercapacitor technology. Technical report. Archived from the original on 2014-12-22. Retrieved 2015-02-21.

D. A. Evans, US 5369547 patent, Containers with anodes and cathodes with electrolytes. issued 1994-11-29.

Anonym, FDK, Corporate Information, FDK History 2000s. FDK. Retrieved 2015-02-21. Internet:

K. Naoi, P. Simon. New Materials and New Configurations for Advanced Electrochemical Capacitors. Interface 17(1) (2008) 34–37.

M. E. Sahin, F. Blaabjerg. A Hybrid PV-Battery/Supercapacitor System and a Basic Active Power Control Proposal in MATLAB/Simulink. Electronics 9(129) (2020) 1-17.

E. Frackowiak, F. Béguin. (May 2001). Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39(6) (2001) 937–950.

M. S. Halper, J. C. Ellenbogen. Supercapacitors: A Brief Overview. MITRE Nanosystems Group, (March 2006) Retrieved 2015-02-16.

A. G. Pandolfo, A. F. Hollenkamp. Carbon properties and their role in supercapacitors. J. Power Sources 157 (1) (2006) 11–27.

K. Kinoshita. Electrochemical Oxygen Technology, Wiley (June 1992) ISBN 978-0-471-57043-1.

T. Brousse, D. Bélanger, J. W. Long. To Be or Not to Be Pseudocapacitive?. Journal of the Electrochemical Society 162(5) (2015) A5185–5189.

T. Yuden. Coin type PAS capacitor. Shoe Electronics Ltd. Notice for products (2020).

X. Li, B. Wei. (2012), "Facile synthesis and super capacitive behaviour of SWNT/MnO2 hybrid films. Nano Energy 1(3) (2012) 479–487.

K. Naoi, W. Naoi, S. Aoyagi, J-I. Miyamoto, T. Kamino. New Generation Nanohybrid Supercapacitor. Accounts of Chemical Research. 46 (5) (2013) 1075–1083.

M. Salanne. Ionic Liquids for Supercapacitor Applications. Topics in Current Chemistry 375(3) (2017) 63.

A. Schneuwly, R. Gallay. Properties, and applications of supercapacitors, From the state-of-the-art to future trends, PCIM Conference (2000).

I. Genuth. Ultracapacitor LED Flashlight Charges In 90 Seconds – Slashdot., 2008-12-10, Retrieved 2013-05-29.

M. Farhadi, O. Mohammed. Real-time operation and harmonic analysis of isolated and non-isolated hybrid DC microgrid. IEEE Trans. Ind. Appl. 50(4) (2014) 2900–2909.

M. Mangaraj, A. K. Panda, T. Penthia, Supercapacitor supported DSTATCOM for harmonic reduction and power factor correction. In 2016 IEEE Students' Conference on Electrical, Electronics, and Computer Science (SCEECS) (2016) 1-6.

A. Stepanov, I. Galkin. Development of supercapacitor based uninterruptible power supply, Doctoral school of energy- and geo-technology (2007) Kuressaare, Estonia.

B. Espinar, D. Mayer. Photovoltaic Power Systems Program, The role of energy storage for mini-grid stabilization, International Energy Agency. IEA PVPS Task 11 (July 2011).

N. Kularatna, J. Fernando. A supercapacitor technique for efficiency improvement in linear regulators. 2009 35th Annual Conference of IEEE Industrial Electronics (2009) 132–135.

F. A. Inthamoussou, J. Pegueroles-Queralt, F. D. Bianchi. Control of a Supercapacitor Energy Storage System for Microgrid Applications. IEEE Transactions on Energy Conversion 28(3) (2013) 690–697.

Nippon Chemi-Con. Stanley Electric, and Tamura announce: Development of "Super CaLeCS," an environment-friendly EDLC-powered LED Street Lamp. Press Release Nippon Chemi-Con Corp., 30 March 2010.

J. R. Miller, A. F. Burke. Electrochemical Capacitors: Challenges and Opportunities for Real-World Applications. ECS. 17(1) (Spring 2008).

A. Jaafar, B. Sareni, X. Roboam, M. Thiounn-Guermeur. Sizing of a hybrid locomotive based on accumulators and ultracapacitors. 2010 IEEE Vehicle Power and Propulsion Conference (2010) 1–6.

M. Fröhlich, M. Klohr, St. Pagiela. Energy storage system with ultracaps on board of railway vehicles. Proceedings - 8th World Congress on Railway Research (2008), Soul, Korea, May 18-22.

H. Hondius. Supercapacitors to be tested on Paris STEEM tram. Railway Gazette. 07.08.2009, Internet:

Alstom Corporation. UITP 2015: Alstom launches SRS, a new ground-based static charging system, and extends its APS solution to road transportation. Internet:, 8 June 2015.

T. Hamilton, "Next Stop: Ultracapacitor Buses MIT Technology Review. Internet: (2009-10-19). Retrieved 2013-05-29.

Anonyms. Toyota TS030 LMP1 hybrid revealed. Race car Engineering Magazine, 2012-01-24, Internet:

A. Pesaran, J. Gonder. Recent Analysis of UCAPs in Mild Hybrids, National Renewable Energy Laboratory, Golden, Colorado, 6th Advanced Automotive Battery Conference. Baltimore, Maryland. May 17–19. (2006).

P. Van den Bossche et al. The Cell versus the System: Standardization challenges for electricity storage devices EVS24. International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium. Stavanger/Norway (2009).

B. K. Kim, S. Sy, A. Yu, J. Zhang. Electrochemical supercapacitor for energy storage and conversion. Handbook of Clean Energy Systems. John Wiley & Sons (2015) 1-25.

Z. Yu, L. Tetard, L. Zhai, J. Thomas. Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy & Environmental Science 8(3) (2015) 702-730.

A. Burke. Ultracapacitors: Why, how, and where is the technology. Journal of Power Sources 91(1) (2000) 37-50.

G. G. Amatucci, A. DuPasquier, J. M. Tarascon. U.S. Patent No. 6,187,061. Washington DC: U.S. Patent and Trademark Office (2001).

Y. Maletin, N. Strizhakova, S. Kozachkov, A. Mironova, S. Podmogilny, V. Danilin, J. K. Aleksandrovna. U.S. Patent No. 6,697,249. Washington. DC: U.S. Patent and Trademark Office (2004).

M. E. Şahin, F. Blaabjerg, A. Sangwongwanich. Predesign Simulation of Supercapacitors Based on Simplified Equivalent Circuit Model. CYSENI 2019. Kaunas, Lithuania (2019).

Maxwell Technologies, 48V Ultra-capacitor Module, Internet: (accessed 20.11.2018).

S. Najib, E. Erdem. Current progress achieved in novel materials for supercapacitor electrodes: a mini-review. Nanoscale Advances. 1(8) (2019) 2817-2827.

S. Wasterlain, A. Guven, H. Gualous, J. F. Fauvarque, R. Gallay, U. T. B. M., BâtF, ... & R. Montena. Hybrid power source with batteries and supercapacitor for vehicle applications. ESCAP'06 conference (2006).

T. Kuparowitz. Charge transport and storage in a supercapacitor structure, Brno University of Technology, The Faculty of Electrical Engineering and Communication. 110 p., Ph.D. Thesis (2010).

Supercapacitor (EDLC) Basics (Part 1): What Is a Supercapacitor (EDLC)?, Murata Manufacturing Co., Ltd., (accessed 20.11.2018), Internet:

A. S. Krunal. Supercapacitors: Fundamentals and Applications, January 11 (2018) Internet: electronics/supercapacitors-fundamentals-applications (Accessed 27. 10 2020).

J. Gabay, Supercapacitor Options for Energy-Harvesting Systems (2013) Digi-Key Electronics Corp. Internet: (Accessed 27. 10 2020).

Supercapacitors from Wikipedia (2020) Internet:, (Accessed 27. 10 2020).

X. Chen, R. Paul, L. Dai. Carbon-based supercapacitors for efficient energy storage. National Science Review 4(3) (2017) 453-489.

Z. S. Iro, C. Subramani, S. S: Dash. A Brief Review on Electrode Materials for Supercapacitor. Int. J. Electrochem. Sci. 11 (2016) 10628 – 10643.

M. V. Kiamahalleh, S. H. S. Zein, G. Najafpour, S. A. Sata, S. Buniran. Multiwalled carbon nanotubes based nanocomposites for supercapacitors: a review of electrode materials. Nano 7(02) (2012) 1230002.

M. Jayalakshmi, K. Balasubramanian. Simple capacitors to supercapacitors-an overview. Int. J. Electrochem. Sci. 3(11) (2008) 1196-1217.

S. Mohapatra, A. Acharya, G. S. Roy. The role of nanomaterial for the design of supercapacitor. Lat. Am. J. Phys. Educ. 6(3) (2012) 380.

M. Vangari, T. Pryor, L. Jiang. Supercapacitors: review of materials and fabrication methods, Journal of Energy Engineering 139(2) (2013) 72-79.

A. Burke. R&D considerations for the performance and application of electrochemical capacitors. Electrochimica Acta 53(3) (2007) 1083-1091.

J. C. E. Halper, M. S. Halper. Supercapacitors: A Brief Overview. MITRE Nanosystems Group. March (2006).

M. Y. Ho, P. S. Khiew, D. Isa, T. K. Tan, W. S. Chiu. A review of metal oxide composite electrode materials for electrochemical capacitors. Nano. 9(06) (2014)1430002.

K. Naoi, P. Simon. New materials and new configurations for advanced electrochemical capacitors. Journal of The Electrochemical Society (JES) 17(1) (2008) 34-37.

L. P. Yu, G. Z. Chen. Redox electrode materials for supercapatteries. Journal Power Sources 326 (2016) 604–612.

P. Harrop. Supercapacitor Materials and Technology Roadmap 2019-2039. Boston. (2018). Internet: (Accessed 1.11.2020).

P. Harrop, R. Collins. Supercapacitor Materials and Formats. 2020-2040. (2020). Internet: (Accessed 1.11.2020).

U. Fischer, R. Saliger, V. Bock, R. Petricevic, J. Fricke. Carbon aerogels as electrode material in supercapacitors. J. Porous Mat. 4(4) (1997) 281–285.

V. Presser, M. Heon, Y. Gogotsi. Carbide-derived carbons – From porous networks to nanotubes and graphene. Adv. Funct. Mater. 21(5) (2011) 810–833.

Y. Korenblit, M. Rose, E. Kockrick, L. Borchardt, A. Kvit, S. Kaskel, G. Yushin. High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon. ACS Nano 4 (3) (2010) 1337–1344.

Z. Weijia, L. Xiaojun, Z. Kai, J. Jin, K. I. Ozoemena, S. Chen. Nanomaterials in advanced batteries and supercapacitors, Cham: Springer International Publishing. Chapter 8: Carbon Materials for Supercapacitors. (2016) 271-315.

J. J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B. G. Sumpter, A. Srivastava, M. Conway, A. L. M. Reddy, J. Yu, R. Vajtai, P.M. Ajayan. Ultrathin planar graphene supercapacitors. Nano Letters 11 (4) (2011) 1423–1427.

T. Palaniselvam, J-B. Baek. Graphene-based 2D-materials for supercapacitors. 2D Materials. 2(3) (2015) 032002.

M. F. El-Kady, V. Strong, S. Dubin, R. B. Kaner. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074) (2012) 1326–1330.

R. Signorelli, D. C. Ku, J. G. Kassakian, J. E. Schindall. Electrochemical Double-Layer Capacitors Using Carbon Nanotube Electrode Structures. Proc. IEEE. 97(11) (2009) 1837–1847.

B. E. Conway. Transition from 'Supercapacitor' to 'Battery' Behavior in Electrochemical Energy Storage. J. Electrochem. Soc. 138(6) (1991) 1539–1548.

R. K. Das, B. Liu, J. R. Reynolds, A. G. Rinzler. Engineered Macroporosity in Single-Wall Carbon Nanotube Films. Nano Letters 9(2) (2009) 677–683.

T. Osaka, S. Komaba, X. Liu. Ionic conducting polymers for applications in batteries and capacitors. Nonaqueous Electrochemistry 412 (1999).

H. Gualous et al. Lithium-Ion capacitor characterization and modelling. ESSCAP'08 −3rd European Symposium on Supercapacitors and Applications. Rome/Italy (2008).

K. Naoi, W. Naoi, S. Aoyagi, J-I. Miyamoto, T. Kamino. New Generation "Nanohybrid Supercapacitor”. Accounts of Chemical Research 46 (5) (2013) 1075–1083.

P. Simon, A. F. Burke. Nanostructured carbons: double-layer capacitance and more. The electrochemical society interface. 17(1) (2008) 38.

E. G. Yanes, S. R. Gratz, A. M. Stalcup. Tetraethylammonium tetrafluoroborate: a novel electrolyte with a unique role in the capillary electrophoretic separation of polyphenols found in grape seed extracts. Analyst 125(11) (2000) 1919-1923.

A. Schneuwly, R. Gallay. Properties and applications of supercapacitors. From the state-of-the-art to future trends. PCIM Conference (2000).

A. Laforgue, D. Yang, L. Zhang, Y. Grincourt, J. Zhang, and L. Robitaille. Development of New Generation Supercapacitors for Transportation Applications, EV Conference VE (EMC-MEC), (Archived 2014-01-10).

H. C. Wu, Y. P. Lin, E. Lee et al. High-performance carbon-based supercapacitors using Al current-collector with conformal carbon coating. Materials Chemistry and Physics 117(1) (2009) 294–300.

R. Kotz, M. Carlen. Principles and applications of electrochemical capacitors. Electrochimica Acta 45(15–16) (2000) 2483–2498.

L. Du, P. Yang, X. Yu. Flexible supercapacitors based on carbon nanotube/MnO2 nanotube hybrid porous films for wearable electronic devices J Mater Chem. A 2 (2014) 17561–7.

P. C. Chen, G. Shen, S. Sukcharoenchoke, et al. Flexible and transparent supercapacitor based on In2O3 nanowire/carbon nanotube heterogeneous films. Appl Phys Lett. 94(043113) (2009) 1–3.

G. K. Veerasubramani, K. Krishnamoorthy, and P. Pazhamalai et al. Enhanced electrochemical performances of graphene-based solid-state flexible cable type supercapacitor using redox-mediated polymer gel electrolyte. Carbon. 105(2016) 638–48.

A. B. Dalton, S. Collins, E. Munoz, et al. Super-tough carbon-nanotube fibers. Nature 423 (2003) 703–703.

Y. Zhang, W. Bai, X. Cheng, et al. Flexible and stretchable Lithium-Ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs. Angew Chem Int. Ed 53 (2014), 14564–14568.

Z. Yang, J. Deng, X. Chen, et al. A highly stretchable, fiber-shaped supercapacitor. Angew Chem Int. Ed 52 (2013) 13453–13457.

T. G. Yun, B. Hwang, D. Kim D. et al. Polypyrrole-MnO2-coated textile-based flexible-stretchable supercapacitor with high electrochemical and mechanical reliability. ACS Appl. Mater Interfaces 7 (2015) 9228–34.

A. Tanwilaisiri, Y. Xu, R. Zhang, D. Harrison, J. Fyson, M. Areir. Design and fabrication of modular supercapacitors using 3D printing. Journal of Energy Storage 16 (2018) 1-7.

İ. Yılmaz, A. Gelir, O. Yargi, U. Sahinturk, O. K. Ozdemir. Electrodeposition of zinc and reduced graphene oxide on porous nickel electrodes for high performance supercapacitors. Journal of Physics and Chemistry of Solids 138 (2020) 109307.

W. Gao, N. Singh, L. Song, Z. Liu, A. L. M. Reddy, L. Ci, R. Vajtai, Q. Zhang, B. Wei, and P. M. Ajayan. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nature Nanotechnol 6 (2011) 496–500.

M. F. El-Kady, V. Strong, S. Dubin, and R. B. Kaner. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335 (2012) 1326–1330.

K. Jost, D. Stenger, C. R. Perez, et al. Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics. Energy & Environmental Science 6(9) (2013) 2698–2705.

S. Powell. Clothing the Body Electric: Fabric in Modified T-shirt can Store Electrical Charge (2012) Internet:

Copyright (c) 2020 Turkish Journal of Materials

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.