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1. INTRODUCTION 

Operation with lower exhaust emissions in SI engines has 

become a critical challenge for the automotive industry [1]. 

Numerous researches have focused on the performance and the 

exhaust emission characteristics of spark-ignition (SI) engines [2-

4].  Also, the improved engine performance is an everlasting 

requirement. The exploitation of dual-plug in SI engines has the 

potential to achieve all expectations on performance and 

emissions [1, 5]. Dual-plug configuration with an SI engine 

ensures robust and stable combustions [6]. Alternative fuels 

associated with engine configuration are of great significance in 

SI engines [7]. Ethanol (C2H5OH) is of great importance among 

biofuels [5]. It is obtained from any fermentable material [8] and 

has a high-octane number and flame speed [7]. Also, ethanol fuel 

can be used as pure or mixed with gasoline in SI engines without 

any modification [8]. The disadvantage of ethanol is high 

production cost relative to gasoline. In literature, engine 

performance characteristics in an ethanol-fueled dual-plug SI 

engine were experimentally investigated by Almeida [9]. It was 

found that there was an improvement in the performance 

parameters of all test conditions [9]. Nakayama et al. investigated 

a new engine concept (gasoline-fueled 1.3L 2-plug SI engine-

L13A) which achieved both low fuel consumption and low 

emissions [10]. Wada et al. investigated fuel economy, power, 

and low emission technology of the i-DSI 2-plug engine [11]. 

They found improvement in fuel consumption and maximum 

engine torque-speed. Nakata et al. studied the effects of high RON 

fuels (ethanol and ethanol blends) on the engine thermal 

efficiency of the dual-plug SI engine [12]. The use of ethanol 

resulted in an improvement in the thermal efficiency of the SI 

engine and mitigated exhaust emissions (HC, NOx, and CO2) [12]. 

Raja et al. considered various gasoline-ethanol blends for twin 

spark-ignition engines in the study [13]. High ethanol percentage 

increased brake specific fuel consumption and volumetric 

efficiency while it decreased exhaust emissions [13]. Yontar 

numerically investigated the effects of ethanol and blending fuels 

on engine performance characteristics in a sequential ignition 

dual-plug SI engine [14]. The use of E85 fuel increased engine 

performance value when compared to gasoline.   
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Most of the on-road vehicles with two and four wheels have spark-ignition (SI) 

engines. Investigations on SI engine performance and exhaust emission 

characteristics are still valuable due to environmental reasons. This study, therefore, 

investigated the effect of equivalence ratio, spark timing, and spark-plug location on 

engine performance and exhaust emission characteristics in an ethanol-fuelled dual-

plug SI engines by using a theoretical model. Findings showed that dual-spark plug 

configuration (SpL@d) in an SI engine is the convenient solution to continue 

superior engine performance and exhaust emission characteristics if there are some 

design constraints in contrast to the centrally located single plug (SpL@c) 

configuration giving the best engine performance and fuel economy.  
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The literature survey showed variety of studies investigated 

the engine performance and exhaust emissions of dual-plug SI 

engines. However, a comprehensive analysis could not be found, 

including the effect of equivalence ratio, spark timings, and spark 

plug locations on these characteristics. 

This study aims to reveal the effect of equivalence ratio, spark 

timing, and spark plug location on the performance and the 

exhaust emissions of ethanol-fueled dual-plug SI engines.  

 

2. THEORETICAL MODEL 

There are two theoretical study methods to study of the combustion 

and performance characteristics of internal combustion engines: (1) 

thermodynamic modelling and (2) CFD based modelling. The 

thermodynamic modelling method is composed of a zero and quasi-

dimensional model (QD). The zero-dimensional model uses finite heat 

release rate, i.e., Cosine or Wiebe functions [15]. Quasi-dimensional 

models consider the flame propagation model for governing the 

combustion process in an SI engine [1, 3, 5-6, 8]. In this study, a two-

zone quasi-dimensional thermodynamic cycle simulation model was 

used to investigate ethanol-fueled dual-plug SI engine performance and 

exhaust emission characteristics. The model uses the flame propagation 

model approach to meet the quasi-dimensional concept. An 

infinitesimally thin spherical flame front divides the enclosed 

combustion chamber into two regions called burned and unburned zones. 

The schematic representation of the thermodynamic model is shown in 

Figure 1. The thermodynamic model's governing equations (Equations 

1-4) are differential form of the energy conservation equation and 

obtained by applying an open thermodynamic system approach to the SI 

engine combustion chamber. Further details of the QD thermodynamic 

model can be found in elsewhere [6]. Calculation of the performance 

parameters was carried out by Equations (10-14). Specifications for 

dual-plug SI engine and fuel properties are shown in Table 1.  

 

Table 1. Engine specifications and fuel properties [4, 5]. 

 Parameter Value 

 

 

Engine 

Bore x Stroke (mm) 73 x 80 

Connecting rod length (mm) 135 

Compression ratio (-) 10.8:1 

Ignition system  DPSI 

Maximum power (kW@rpm) 63@5700 

Maximum torque (Nm@rpm) 119@2800 

 

 

Fuel 

Chemical formula   C2H5OH 

Molecular weight (kg/kmol) 46.07 

Stoichiometric AFR by mass (-) 8.94 

Lower heating value (MJ/kg) 27 

Research octane number (-) 111 

Laminar flame speed (cm/s)  39 

 

 

 
Fig. 1. Schematic of the two-zone quasi-dimensional 

thermodynamic model [6]. 

 

Three spark plug locations (diagonally located two (SpL@d), 

centrally located single (SpL@c), and side located single spark plug 

(SpL@s) on cylinder head), equivalence ratios (from 0.8 to 1.1 by 0.1), 

spark timings (from -35 CA to -20 CA by 5 CA) and nominal engine 

speed (5700 rpm) [6] were considered to represent of the operating 

conditions in the simulation studies. The equation set of the QD 

thermodynamic model was simultaneously solved by computer code.  

 

Governing equations of the QD model: 

 

�̇� − 𝑝�̇� = 𝑚�̇� + 𝑢�̇� + 𝑚𝐿̇ ℎ�̇� 𝜔⁄                                                 (1) 

 

�̇� =
𝐴+𝐵+𝐶

𝐷+𝐸
                                                                                     (2) 
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Performance parameters are given below equations.  

Mean indicated pressure: 

 

𝑝𝑚𝑖 =
𝑊𝑖

𝑉ℎ
                                                                                                (10) 

 

Mean effective pressure: 

 

𝑝𝑚𝑒 = 𝑝𝑚𝑖 − 𝑝𝑚,𝑚                                                                           (11) 

 

Effective (brake) power: 

 

𝑃𝑒 =
𝑝𝑚𝑒𝑉ℎ𝑧𝑛

60𝑘
                                                                                        (12) 

 

Effective efficiency: 

 

𝜂𝑒 =
𝑝𝑚𝑒𝑅𝑇𝑜

𝐹𝑠𝜙𝐻𝑢𝑝𝑜𝜂v
                                                                                    (13) 

 

Specific fuel consumption: 

 

𝑏𝑒 =
3600

𝐻𝑢𝜂𝑒
                                                                                               (14) 

 

2.1. Validation of the Theoretical Model 

Two methods were used to validate the theoretical model: (1) 

engine performance data, including brake power and engine 

torque, and (2) mean absolute percentage error (MAPE) [5]. 

MAPE was calculated by Equation (15). 

 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑡𝑖−𝑐𝑖

𝑡𝑖
| × 100𝑛

𝑖=1                                              (15) 

 

Where t is the experimental data, c is the model data, and n is the 

number of data points. Figure 2 shows validation of the presented 

theoretical model by using performance data. The numerical 

results of the validation tests are also given in Table 2. Validation 

tests (Figure 2 and MAPE) show that the presented model 

complies with the existing literature [4]. 

 

Table 2. Numerical results of the validation tests 

 

 
Fig. 2.  Validation of the QD thermodynamic model. 

 

3. RESULTS AND DISCUSSION 

3.1. Evaluation of Performance Parameters 

Figures 3(a), (b), and (c) show the effect of equivalence ratio 

on brake power, brake specific fuel consumption, and maximum 

burned gas temperature of ethanol-fueled dual-plug SI engine, 

respectively. The highest brake power in the simulation was 

obtained at the SpL@c configuration, having the shortest flame 

travel distance throughout all equivalence ratios, as shown in 

Figure 3(a). The data of brake power at SpL@d case were close 

to SpL@c case because dual ignition accelerated the combustion 

process by increased flame front area [3]. Enhanced combustion 

led to expanding the brake power of the SI engine. Maximum 

brake power was obtained in the vicinity of the stoichiometric 

ratio (=1) at all three cases. 2.2% higher brake power at SpL@c 

was obtained for the stoichiometric ratio compared to the SpL@d 

case. Operating at a higher equivalence ratio (in other words, rich 

mixture) did not affect the brake power. Brake specific fuel 

consumptions (bsfc) were indicated in Figure 3(b). bsfc at SpL@c 

case was minimum throughout all equivalence ratios. There were 

significant differences among brake specific fuel consumptions at 

lower equivalence ratios. It was determined that the equivalence 

ratio did not dominate at higher equivalence (more than 

stoichiometric) ratios. Equivalence ratio =0.9 led to minimum 

bsfc in the ethanol-fueled dual-plug engine.   

Figures 4 (a), (b), and (c) show the effect of spark timing on 

brake power, brake specific fuel consumption, and maximum 

burned gas temperature of ethanol-fueled dual-plug SI engine, 

respectively. Spark timing close to the top dead centre resulted in 

higher brake power and lower brake specific fuel consumption. 

SpL@c case can be reported here as the best configuration, as 

well. Maximum burned gas temperature is another critical 

parameter in SI engines since the higher burned gas temperature 

can result in higher NOx emissions. The maximum burned gas 

temperature was obtained at SpL@c and SpL@d cases, as shown 

in Figures 3 (c) and Figures 4 (c). 

 

Performance 

parameters 

Test 1 

(Deviation from the exp. data) 

Test 2 

(MAPE) 

Engine torque 11.3% @ 2800 rpm 7.69% 

Engine power 3.84% @ 5700 rpm 8.51% 
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     (a) 

                                  

 
         (b) 

 

 
        (c) 

Fig. 3. Effect of equivalence ratio on the performance 

parameters: (a) brake power, (b) brake specific fuel 

consumption, and (c) maximum burned gas temperature. 

 
         (a) 

 

 
         (b) 

 

 
            (c) 

Fig. 4. Effect of spark timings on the performance parameters: 

(a) brake power, (b) brake specific fuel consumption, and (c) 

maximum burned gas temperature. 
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3.2. Evaluation of Exhaust Emissions 

Figure 5 shows the effects of the equivalence ratio on exhaust 

emissions (CO2, CO, and NO).  CO2 emission indicates 

combustion efficiency. A higher value of CO2 emission leads to 

more global warming. Figure 5(a) relates to CO2 emission. The 

highest CO2 emission was at a stoichiometric ratio with various 

spark plug configurations. Improvement in the combustion 

process with dual-plug can be indicated according to CO2 

emission levels in Figure 5 (a). CO emission increased as the 

equivalence ratio increased because of the lack of oxygen in the 

combustion chamber. NO emission was the highest at =0.9 (a bit 

lean mixture). This finding complies with the literature [16].  

The effect of spark timing on exhaust emissions was presented 

in Figure 6. Minimum CO2 emission was obtained from SpL@c 

configuration due to fast combustion, as shown in Figure 6 (a). 

CO emission results have the same trend at each spark timing and 

are independent from spark timings as expressed in Figure 6 (b). 

Figure 6 (c) shows NO emission results. The most effective 

parameter on NO emission is clearly spark plug location. 

 
(a) 

 
(b) 

 
(c) 

Fig. 5. Effect of equivalence ratio on exhaust emissions:(a) 

CO2, (b) CO, and (c) NO (cont’d). 

   
(a)           

 
(b) 

 
(c) 

Fig. 6. Effect of spark timing on exhaust emissions: 

(a) CO2, (b) CO, and (c) NO (cont’d). 

4. CONCLUSIONS  

This study theoretically investigated the effect of equivalence 

ratio, spark timing, and spark plug location on engine 

performance and exhaust emission characteristics in ethanol-

fueled dual-plug SI engines.  The findings of the present study led 

to the following conclusions: 

 The centrally located single plug configuration (SpL@c) gives 

the best engine performance and fuel economy.  

 Dual-spark plug configuration (SpL@d) in an SI engine is 

more convenient solution to continue improved engine 

performance characteristics if there are some design 

constraints. 
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 Equivalence ratio =0.9 led to minimum bsfc in the ethanol-

fueled dual-plug engine.   

 SpL@c case has a maximum burned gas temperature. 

 The highest CO2 emissions were at the stoichiometric ratio 

with various spark plug configurations. 

 The highest NO emission was obtained at =0.9 (a bit lean 

mixture). 

 CO emission decreased at advanced spark timing. 

 

Nomenclature 

- Dimensionless parameter 

be Brake specific fuel consumption 

CA Crank angle (°) 

CO Carbon monoxide  

CO2 Carbon dioxide  

Fs Stoichiometric fuel/air ratio (-) 

h Specific enthalpy (kJ kg-1) 

Hu Lower heating value (kJ kg-1) 

k Constant (k=2 for 4-stroke engines) 

m Mass (kg) 

MAPE Mean absolute percentage error (%) 

n Engine speed (rpm) 

NOx Nitrogen oxide  

p Cylinder pressure (bar) 

po Ambient pressure (bar) 

Pe Brake power (kW) 

Pme Mean effective pressure (bar) 

Pmi Mean indicated pressure (bar) 

Pm,m Mean pressure of mechanical losses (bar) 

Q Heat loss (J) 

QD Quasi-dimensional 

rf Flame radius (mm) 

R Ideal gas constant (J g-1 K-1) 

SpL@c Centrally-located single plug 

SpL@d Diagonally located dual-plugs 

T Temperature (K) 

T Engine torque (Nm) 

To Ambient temperature (K) 

U Specific internal energy (kJ kg-1) 

V Instantaneous cylinder volume (m3) 

Vh Displacement volume (m3) 

W Work (J) 

x Mass fraction burned (-) 

yCO Volumetric ratio of CO in combustion products (ppm) 

yCO2 Volumetric ratio of CO2 in combustion products (ppm) 

yNO Volumetric ratio of NO in combustion products (ppm) 

z Cylinder number (-) 

 Equivalence ratio (-) 

e Brake thermal efficiency (-) 

v Volumetric efficiency (-) 

 Crank angle (°) 

 Angular velocity (s-1) 

b Burned 

i Indicated 

u Unburned 

L Loss 
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