Comparison of metaheuristic methods objective function

Photovoltaic Parameters Estimation Using Hybrid Flower Pollination with Clonal Selection Algorithm

Ahmed Kamal RYAD, Ahmed Mohamed ATALLAH, Abdelhaliem ZEKRY

Abstract


Extracting the parameters of photovoltaic (PV) cell is a vital process to accurately simulate the behavior of the cell. Various techniques are used to extract these parameters such as iterative, and metaheuristic methods. Although metaheuristic methods require more test points on the PV module, through this paper the optimization function is chosen to accurately adjust the I-V curve of the PV module based on less number of test points yet still achieve higher accuracy. A modified hybrid flower pollination method with clonal selection algorithm is suggested to extract the PV parameters and is compared with various metaheuristic methods to estimate the PV parameters of the single diode model, the two-diode model. In addition, modeling the PV at various irradiance and temperature levels was performed. Results show an excellent curve fitting for I-V characteristics and more accurate results in estimating the unknown parameters of PV cell.  


Full Text:

PDF

References


REN21 (2018), Renewables 2018 Global Status Report (Paris: REN21 Secretariat). ISBN 978-3-9818911-3-3,

http://www.ren21.net/status-of-renewables/global-status-report/ (Accessed 30.06.2018).

IRENA (2017), Renewable Energy Statistics 2017, The International Renewable Energy Agency, Abu Dhabi, https://www.irena.org/publications/2017/Jul/Renewable-Energy-Statistics-2017 (Accessed 30.06.2018).

M. E. Şahin, H. İ. Okumuş, Physical Structure, Electrical Design, Mathematical Modeling and Simulation of Solar Cells and Modules, Turkish Journal of Electromechanics & Energy, 1(1), (2016).

V. J. Chin, Z. Salam, and K. Ishaque, Cell Modeling and model parameters estimation techniques for photovoltaic simulator application: A review, Appl. Energy, vol. 154, 500–519, (2015).

N. Barth, R. Jovanovic, S. Ahzi, and M. A. Khaleel, PV panel single and double diode models: Optimization of the parameters and temperature dependence, Solar Energy Materials and Solar Cells, vol. 148, 87–98, (2016).

A. R. Jordehi, Parameter estimation of solar photovoltaic (PV) cells: A review, Renew. Sustain. Energy Rev., vol. 61, pp. 354–371, (2016).

M. Villalva, J. Gazoli, and E. Filho, Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays, IEEE Trans. Power Electronics, 24(5),1198–1208, (2009).

M. S. Ebrahim, A.M. Sharaf, A. M. Atallah, A. S. Emareh, An Efficient Controller for Standalone Hybrid- PV Powered System, Turkish Journal of Electromechanics & Energy, 2(1), (2017).

J. Gow, C. Manning, Development of a model for photovoltaic arrays suitable for use in simulation studies of solar energy conversion systems, Sixth International Conference on Power Electronics and Variable Speed Drives, Conf. Publ. No. 429, 69-74 (1996).

S. Chowdhury, G. A. Taylor, S. P. Chowdhury, A. K. Saha, Y. H. Song, Modeling, simulation and performance analysis of a PV array in an embedded environment, 42nd International Universities Power Engineering Conference, vol.42,781-785, (2007).

S. Gupta, H. Tiwari, M. Fozdar, V. Chandna, Development of a two-diode model for photovoltaic modules suitable for use in simulation studies,2012 Asia-Pacific Power and Energy Engineering Conference, 1-4, (2012).

K. Nishioka, N. Sakitani, Y. Uraoka, T. Fuyuki, Analysis of multi-crystalline silicon solar cells by modified 3-diode equivalent circuit model taking leakage current through periphery into consideration, Solar Energy Materials and Solar Cells, 91(13),1222–7, (2007).

K.A. Kim, C. Xu, L. Jin, P.T. Krein, A dynamic photovoltaic model incorporating capacitive and reverse-bias characteristics, IEEE Journal of Photovoltaics, 3(4), 1334–41, (2013).

G. Ciulla, V. Lo Brano, V. Di Dio, and G. Cipriani, A comparison of different one-diode models for the representation of I-V characteristic of a PV cell, Renew. Sustain. Energy Rev., vol. 32, 684–696, (2014)

M. Ye, X. Wang, Y. Xu, Parameter extraction of solar cells using particle swarm optimization, Journal of Applied Physics, vol.105, 1-8, (2009).

S. Jing Jun, L. Kay-Soon, Photovoltaic model identification using particle swarm optimization with inverse barrier constraint, IEEE Trans Power Electronics, 27(9), 3975–83, (2012).

M. S. Ismail, M. Moghavvemi, TMI Mahlia, Characterization of PV panel and global optimization of its model parameters using genetic algorithm, Energy Convers Manage, vol.73, 10–25, (2013).

M. F. AlHajri, K. M. El-Naggar, M. R. AlRashidi and A. K. Al-Othman, Optimal extraction of solar cell parameters using pattern search, Renewable Energy, vol. 44, 238-245, (2012).

K. M. El-Naggar, M. R. AlRashidi, M. F. AlHajri and A. K. Al-Othman, Simulated annealing algorithm for photovoltaic parameters identification, Solar Energy, vol.86, 266–74, (2012)

X. Yang, Nature-Inspired Metaheuristic Algorithms Nature-Inspired Metaheuristic Algorithms, Second Edition, (2010).

J. Ma, T. O. Ting, K. L. Man, N. Zhang, S. U. Guan, and P. W. H. Wong, Parameter estimation of photovoltaic models via cuckoo search, Journal of. Applied. Mathematics., vol. 2013, 10–12, (2013).

X.-S. Yang, and S. Deb, Engineering Optimization by Cuckoo Search, Int. J. Mathematical Modelling and Numerical Optimization, vol.1, 1–17, (2010).

R. Jovanovic, S. Kais, and F. H. Alharbi, Cuckoo Search Inspired Hybridization of the Nelder- Mead Simplex Algorithm Applied to Optimization of Photovoltaic Cells, Appl. Math. Inf. Sci, 10(3), 961–973, (2016).

S. Mirjalili and A. Lewis, The Whale Optimization Algorithm, Adv. Eng. Software, vol. 95, 51–67, (2016).

D. Oliva, M. Abd El Aziz, and A. Ella Hassanien, Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm, Appl. Energy, vol. 200, 141–154, (2017).

S. Mirjalili, S. M. Mirjalili, and A. Lewis, Grey Wolf Optimizer, Adv. Eng. Software, vol. 69, 46–61, (2014).

S. Mirjalili, The ant lion optimizer, Adv. Eng. Software, vol. 83, 80–98, (2015).

D. F. Alam, D. A. Yousri, and M. B. Eteiba, Flower Pollination Algorithm based solar PV parameter estimation, Energy Conversion and Management, vol. 101, 410–422, (2015).

E. Nabil, A Modified Flower Pollination Algorithm for Global Optimization, Expert Systems with Applications, vol. 57, 192–203, (2016).

M. U. Siddiqui, a. F. M. Arif, a. M. Bilton, S. Dubowsky, and M. Elshafei, An improved electric circuit model for photovoltaic modules based on sensitivity analysis, Solar. Energy, vol. 90, 29–42, (2013).

M. A. Abido and M. S. Khalid, Seven-parameter PV model estimation using Differential Evolution, Electrical Engineering, 100(2), 971-981, (2018).

D. S. Pillai and N. Rajasekar, Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems, Renew. Sustain. Energy Rev., 82(3), 3503–3525, (2018).

M. U. Siddiqui and M. Abido, Parameter estimation for five- and seven-parameter photovoltaic electrical models using evolutionary algorithms, Applied Soft Computing. J., 13(12), 4608–4621, (2013).

H. Ibrahim and N. Anani, Variations of PV module parameters with irradiance and temperature, Energy Procedia, vol. 134, 276–285, (2017).




URN: https://sloi.org/urn:sl:tjoee3288



Copyright (c) 2018 Turkish Journal of Electromechanics and Energy

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexed in: