A Comprehensive Analysis of Material Revolution to Evolution in Lithium-ion Battery Technology
Abstract
Lithium-ion batteries (LIBs) have significantly impacted our lives and are now found in various devices such as cell phones, laptops, and electric vehicles. An appropriate electrolyte was produced in LIBs via a twisting route, which relates to the progress of electrode chemistry. Based on recent research and discoveries, LIB has emerged as the technology of choice for storing electrical energy for use in mobile products and electric vehicles. This is due to LIBs' very desirable qualities, such as their lightweight, high energy density, small size, little memory effect, extended lifespan, and low pollution. In this method, a metal oxide serves as the cathode and porous carbon as the anode. The electrochemical interaction of lithium with anode materials can generate intercalation products that are the basis for innovative battery systems. At room temperature, structural retention makes this reaction quick and reversible. This concise overview examines the progress of LIB technology and the impact of the materials used in different technologies on cell performance. The section summarizes the evolution of LIB cells and Li+ ion storage into various materials and intercalation chemistry.
Full Text:
PDFReferences
Winter, M., Brodd, R.J. What are batteries, fuel cells, and supercapacitors? Chem. Rev.104, 4245–4270 (2004)
Nitta, N., Wu, F., Lee, J.T., Yushin, G. Li-ion battery materials: present and future. Mater. Today.18, 252–264 (2015)
Huang, B., Li, X., Wang, Z., Guo, H., Shen L., Wang, J. A comprehensive study on electrochemical performance of Mn-surface-modified LiNi0.8Co0.15Al0.05O2 synthesized by an in situ oxidizing-coating method. J. Power Sources252, 200–207 (2014)
Szczech, J.R., Jin, S. Nanostructured silicon for high capacity lithium battery anodes.Energy Environ. Sci. 4, 56–72(2011)
Theodore, A. M., Konwar, S., Singh, P. K., Mehra, R.M., Kumar, Y., Gupta, M. PEO + NaSCN and ionic liquid-based polymer electrolyte for supercapacitor. Mater. Today: Proc. 34, 802-812 (2021)
Theodore, A.M. Progress into lithium-ion battery research. J. Chem. Res. 47,1–9 (2023)
Azemtsop, M.T. PhD dissertation: Ionic liquid-based solid polymer electrolytes for supercapacitor application. Sharda University. (2021). http://hdl.handle.net/10603/368010
Liu, X., Zhu, X., Pan, D. Solutions for the problems of silicon–carbon anode materials for lithium-ion batteries. R. Soc. open sci. 5, 172370 (2018)
Theodore A. M., Abbas A.A., Dhapola, P.S. Effect of Layered, Spinel, and Olivine-Based Positive Electrode Materials on Rechargeable Lithium-Ion Batteries: A Review. JCMPS 6, 38-57 (2023)
Theodore A. M. Promising Cathode Materials for Rechargeable Lithium-Ion Batteries: A Review. J. Sustain. Energy 14, 51-58 (2023¬)
Badi, N., Theodore A.M., Aashis Roy, A., Alghamdi1, S.A., Ahmed Obaid M Alzahrani, A.O.M., Ignatiev, A. Preparation and Characterization of 3D Porous Silicon Anode Material for Lithium-Ion Battery Application. Int. J. Electrochem. Sci. 17, 22064 (2022)
Theodore, A. M., Badi, N., Alghamdi S. A. The Impact of Polymer Electrolyte Properties on Lithium-Ion Batteries. ISBN: 978-99949-8-217-2. Eliva Press. Global Ltd (2022)
Theodore, A.M. Structural, electrical, and electrochemical studies of the olivine LiMPO4 (M=Fe, Co, Cr, Mn, V) as cathode materials for lithium-ion rechargeable batteries based on the intercalation principle [version 1; peer review: awaiting peer review]. Material Open Res 2,11 (2023)
Şahin, M.E., F Blaabjerg, F., Sangwongwanİch, A. Modelling of supercapacitors based on the simplified equivalent circuit. CPSS Trans. Power Electron. Appl. 6, 31-39 (2021)
Whittingham, M. S., Belgian Patent No. 819,672 (1973)
Heredy, L., U.S. Patent No. 3,898,096 (1975)
Dines, M. B., U.S. Patent No. 3,933,688 (1976)
Aronson, S. Thermodynamic Properties Of Potassium-Graphite Lamellar Compounds From Solid-State Emf Measurements. J. Chem. Phys 49, 434 (1968)
Cairns, E.J. High-Temperature Batteries. Science 164, 1347 (1969)
Dines, M.B., Lithium Intercalation Via N-Butyllithium of Layered Transition-Metal Dichalcogenides. Mater. Res. Bull.10, 287 (1975)
Goodenough, J.B., Park K-S.The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135, 1167–1176 (2013)
Mizushima, K., Jones P.C., Wiseman, P.J., Goodenough, J.B. LixCoO2 (0
Yazami, R., Touzain, Ph. J. A reversible graphite-lithium negative electrode for electrochemical generators. Power Sources 9, 365-371 (1983)
Whittingham, M.S. Lithium Batteries and Cathode Materials. Chem Rev 104, 4271–4302 (2004)
Choi, J.W., Aurbach, D. Promise and reality of post-lithium-ion
batteries with high energy densities. Nat Rev Mater 1, 16013 (2016)
Goodenough, J.B., Gao, H. A perspective on the Li-ion battery. Sci China Chem, 62 (2019)
Kang, Xu. Li-ion battery electrolytes. Nature Energy 6, 763 (2021)
Yoshino, A., Sanechika, K., Nakajima, T. Secondary battery. U. S. Pat. 4,668,595 26 (1987)
Ramanan, A. Nobel Prize in Chemistry 2019. Resonance 24(12), 1381–1395 (2019)
Watanabe, N., Nakajima, T., Touhara, H. Graphite Fluorides. Elsevier, Amsterdam, 8, 23-89 (1988)
Whittingham, M. S. Chalcogenide battery. US patent 4,009,052 (1973)
Goodenough, J. B. & Mizushima, K. Electrochemical cell with new fast ion conductors. US patent 4,302,518 (1981)
Zheng, M., Tang H., Li, L., Hu, Q., Zhang, Li., Xue, H., Pang, H. Hierarchically Nanostructured Transition Metal Oxides for Lithium-Ion Batteries. Adv. Sci. 5, 1700592 (2018)
Zaghib, K., Goodenough, J. B., Mauger, A., Julien, C. Unsupported claims of ultrafast charging of LiFePO 4 Li-ion batteries. J. Power Sources 194, 1021-1023 (2009)
Yoshino, A., Sanechika, K., Nakajima, T. Japanese Patent 1989293, (1985)
Whittingham, M. S. In Intercalation Chemistry; Whittingham, M. S., Jacobson, A. J., Ed.; Academic Press: New York, (1982) Chapter 1
Harris, W. S. Electrochemical studies in cyclic esters. Thesis, University of California, Berkeley (1958)
Nishi, Y. The development of lithium-ion secondary batteries. Chem. Rec. 1(5), 406-413 (2001)
Fujimoto, M. et al. Lithium secondary batteries. Japanese patent 3,229,635 (1991)
Okuno, H. & Koshina, S. Japanese patent 2,780,480 (1990)
Kaliaperumal, M., Dharanendrakumar, M.S., Prasanna, S., Abhishek, K.V., Chidambaram, R.K., Adams, S., Zaghib, K., Reddy, M.V. Cause and Mitigation ofLithium-Ion Battery Failure—A Review. Materials 14, 5676 (2021)
Du Pasquier, A., Plitz, I., Menocal, S., Amatucci, G. A comparative study of Li-ion battery, supercapacitor, and nonaqueous asymmetric hybrid devices for automotive applications. J. Power Source 115, 171–178 (2003)
Li, J., Suzuki, T., Naga, K., Ohzawa, Y., Nakajima, T. Electrochemical performance of LiFePO 4 modified by pressure-pulsed chemical vapor infiltration in lithium-ion batteries. Mater. Sci. Eng. B 142, 86–92 (2007)
Takahashi, M., Ohtsuka, H., Akuto, K., Sakurai, Y. Confirmation of long-term cyclability and high thermal stability of LiFePO4 in prismatic lithium-ion cells. J. Electrochem. Soc. 152, A899–A904 (2005)
Zaghib, K., Shim, J., Guerfi, A., Charest, P., Striebel, K.A. Effect of carbon source as additives in LiFePO4 as positive electrode for lithium-ion batteries. Electrochem. Solid-State Lett. 8, A207–A210 (2005)
Jiang, J., Dahn, J.R. ARC studies of the thermal stability of three different cathode materials: LiCoO2; Li [Ni0.1Co0.8Mn0.1]O2; and LiFePO4, in LiPF6 and LiBoB EC/DEC electrolytes. Electrochem. Commun 6, 39–43(2004)
Dong, Y.Z., Zhao, Y.M., Chen, Y.H., He, Z.F., Kuang, Q. Optimized carbon-coated LiFePO4 cathode material for lithium-ion batteries. Mater. Chem. Phys. 115, 245–250 (2009)
Armand, M., Tarascon, J.-M. Building better batteries. Nature 451, 652–657 (2008)
Martha, S.K., Haik, O., Zinigrad, E., Exnar, I., Drezen, T., Miners, J.H., Aurbach, D. On the thermal stability of olivine cathode materials for lithium-ion batteries. J. Electrochem. Soc. 158, A1115–A1122 (2011)
Julien C. M., Mauger, A. Review of 5-V electrodes for Li-ion batteries: status and trends. Ionics 19, 951-988 (2013)
McDowall, J. Understanding lithium-ion technology. In Proceedings of the Battcon, Marco Island, FL, USA 5–7 (2008)
Huang, P., Ping, P., Li, K., Chen, H., Wang, Q., Wen, J., Sun, J. Experimental and modeling analysis of thermal runaway propagation over the large format energy storage battery module with Li4Ti5O12 anode. Appl. Energy 183, 659–673 (2016)
Spotnitz, R., Franklin, J. Abuse behavior of high-power, lithium-ion cells. J. Power Sources 113, 81–100 (2003).
Obrovac, M. N., Chevrier, V. L. Alloy Negative Electrodes for Li-Ion Batteries. Chem. Rev. 2014, 114 (23), 11444–11502 (2014)
Sharova, V., Moretti, A., Giffin, G., Carvalho, D., Passerini, S. Evaluation of CarbonCoated Graphite as a Negative Electrode Material for Li-Ion Batteries. J. Carbon Res 3 (22), 1–11 (2017)
Loeffler, N., Bresser, D., Passerini, S., Copley, M. Secondary Lithium-Ion Battery Anodes: From First Commercial Batteries to Recent Research Activities. Johnson Matthey Technol. Rev. 59 (1), 34–44 (2015)
Zhang, H., Li, C., Piszcz, M., Coya, E., Rojo, T., Rodriguez-Martinez, L.M., Armand, M., and Zhou, Z. Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. Chem. Soc. Rev. 46, 797–815 (2017)
Yazami, R. et al. International Meeting on Lithium Batteries, Rome, April 27–29, 1982, C.L.U.P. Ed. Milan, Abstract #23
Garche, J., Garcia, J., Dyer, C., Moseley, P.T., Ogumi, Z., Rand, D.A. J., Scrosati, B. Encyclopedia of Electrochemical Power Sources. Ulm: Elsevier B.V (2009)
Annette, E. T. Optimisation Model of Intelligent Charging Strategies for Battery Electric Vehicles Considering the Power System and Battery Ageing. PhD dissertation. Fakultät für Elektrotechnik und Informationstechnik (2017)
Badi, N., Theodore, A.M., Alghamdi, S.A., Al-Aoh, H.A., Lakhouit, A., Singh, P.K., Norrrahim, M.N.F., Nath, G. The Impact of Polymer Electrolyte Properties on Lithium-Ion Batteries. Polymers 14, 3101 (2022)
Bubulinca, C., Kazantseva, N.E., Pechancova, V., Joseph, N., Fei, H., Venher, M., Ivanichenko, A., Saha, P. Development of All-Solid-State Li-Ion Batteries: From Key Technical Areas to Commercial Use. Batteries 9, 157 (2023)
Tarascon, J.M., Armand, M. Issues and Challenges Facing Rechargeable Lithium Batteries. Nature 414, 359-367 (2001)
Theodore, A.M. Şahin, M.E. Modeling and simulation of a series and parallel battery pack model in MATLAB/Simulink. Turk J Electr Power Energy Syst. (2024)
Azemtsop M. T, Şahin M.E. Intercalation Reaction in Lithium-Ion Battery: Effect On Cell Characteristics. TIJMET 6(2),70-78 (2023)
Copyright (c) 2023 Turkish Journal of Materials
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Indexing: