E. Bingöl and M. Tomakin

Investigation of Deposition Parameters of Micro/Nanorod ZnO Thin Films with Ultrasonic Spray Pyrolysis Method

Eda Bingöl, Murat Tomakin


ZnO thin films were deposited on glass substrate by ultrasonic spray pyrolysis method in two steps: i) different substrate temperatures (between 300–500 °C, step by 50 °C) and ii) different solution molarities (between 0.05 M – 0.25 M, step by 0.05 M). X-ray diffraction studies showed that ZnO samples have hexagonal structure with (002) preferred direction. However, preferred orientation decreased for 450 °C and 500 °C substrate temperatures. Surface morphology of ZnO samples completely changed as hexagonal shaped microrods after 400 °C. ZnO nanorods with hexagonal shape grew for 0.05 M. Composition ratio ([Zn]/[O]) of the samples decreased from 1.07 to 1.01 depending on substrate temperature as [Zn]/[O] ratio increased from 1.04 to 1.09 with increasing molarity. A sharp ultraviolet luminescence was observed at ~380 nm for high substrate temperature and molarity values. Band gap values decreased from 3.27 eV to 3.19 eV as increasing of substrate temperature. Solution molarity was not effected significantly band gap values (3.20–3.22 eV) of the samples. Lower resistivity (1.56´103 W-cm) and higher carrier concentration values (1.27´1015 cm–3) was obtained for 400 °C substrate temperature and 0.15 M.

Full Text:



I. Polat, S. Yılmaz, I. Altın, E. Bacaksız, M. Sokmen, The influence of Cu-doping on structural, optical and photocatalytic properties of ZnO nanorods, Mater. Chem. Phys. 148 (2014) 528–532.

M. Salem, S. Akir, T. Ghrib, K. Daoudi, M. Gaidi, Fe-doping effect on the photoelectrochemical properties enhancement of ZnO films, J. Alloys Compd. 685 (2016) 107–113.

D. Thomas, J. Abraham, S.C. Vattappalam, S. Augustine, T.D. Thomas, Antibacterial activity of pure and cadmium doped ZnO thin film, Indo Am. J. Pharm. Res. 4 (2014) 1612–1616.

D.J. Milliron, S.M. Hughes, Y. Cui, L. Manna, J. Li, L.-W. Wang, A.P. Alivisatos, Colloidal nanocrystal heterostructures with linear and branched topology, Nature. 430 (2004) 190–195.

X. Wang, X. Xie, X. Song, J. Tian, S. Ma, H. Cui, Fabrication of Au decorated porous ZnO microspheres with enhanced gas sensing properties, Powder Technol. 315 (2017) 379–384.

X. Huang, J. Xia, C. Luan, M. Sun, X. Wang, G.-W. She, C.-S. Lee, X.-M. Meng, The structural and optical properties of a single ZnO comb and an individual nail-like tooth, CRYSTENGCOMM. 15 (2013) 10604–10610.

B.-C. Lina, C.-S. Kub, H.-Y. Lee, A.T. Wua, Epitaxial growth of ZnO nanorod arrays via a self-assembled microspheres lithography, Appl. Surf. Sci. 414 (2017) 212–217.

Z.-W. Wu, S.-L. Tyan, C.-R. Lee, T.-S. Mo, Bidirectional growth of ZnO nanowires with high optical properties directly on Zn foil, Thin Solid Films. 621 (2017) 102–107.

E. Modaresinezhad, S. Darbari, Realization of a room-temperature/self-powered humidity sensor, based on ZnO nanosheets, Sensors Actuators B Chem. 237 (2016) 358–366.

J.H. Bang, K.S. Suslick, Applications of Ultrasound to the Synthesis of Nanostructured Materials, Adv. Mater. 22 (2010) 1039–1059.

M. Tomakin, Z. Onuk, N. Rujisamphan, S.I. Shah, Role of the radio frequency magnetron sputtered seed layer properties on ultrasonic spray pyrolyzed ZnO thin films, Thin Solid Films. 642 (2017) 163–168.

M.R. Prasad, M. Haris, M. Sridharan, Structural, optical and ammonia sensing properties of nanostructured ZnO thin films deposited by spray pyrolysis technique, J. Mater. Sci. Mater. Electron. 28 (2017) 11367–11373.

U. Chaitra, D. Kekuda, K.M. Rao, Dependence of solution molarity on structural, optical and electrical properties of spin coated ZnO thin films, J. Mater. Sci. Mater. Electron. 27 (2016) 7614–7621.

S. Yılmaz, E. Bacaksız, İ. Polat, Y. Atasoy, Fabrication and structural, electrical characterization of i-ZnO/n-ZnO nanorod homojunctions, Curr. Appl. Phys. 12 (2012) 1326–1333.

M. Tomakin, Structural and optical properties of ZnO and Al-doped ZnO microrods obtained by spray pyrolysis method using different solvents, Superlattices Microstruct. 51 (2012) 372–380.

U. Alver, T. Kılınc, E. Bacaksız, S. Nezir, Temperature dependence of ZnO rods produced by ultrasonic spray pyrolysis method, Mater. Chem. Phys. 106 (2007) 227–230.

S.J. Ikhmayies, Synthesis of ZnO Microrods by the Spray Pyrolysis Technique, J. Electron. Mater. 45 (2016) 3964–3969.

H. Y.-M., L. S.-Y., Z. S.-M., Y. R.-J., Z. G.-Y., L. N, Structural. optical. and magnetic studies of manganese-doped zinc oxide hierarchical microspheres by self-assembly of nanoparticles, Nanoscale Res. Lett. 7 (2012) 111–113.

Y. Luo, H. Liu, High optical quality ZnO films grown on graphite substrate for transferable optoelectronics devices by ultrasonic spray pyrolysis, Mater. Res. Bull. 47 (2012) 2685–2688.

S. Yılmaz, M. Parlak, Ş. Özcan, M. Altunbaş, E. McGlynn, E. Bacaksız, Structural, optical and magnetic properties of Cr doped ZnO microrods prepared by spray pyrolysis method, Appl. Surf. Sci. 257 (2011) 9293–9298.

F. Yi, Y. Huang, Z. Zhang, Q. Zhang, Y. Zhang, Photoluminescence and highly selective photoresponse of ZnO nanorod arrays, Opt. Mater. (Amst). 35 (2013) 1532–1537.

G. Srinet, R. Kumar, V. Sajal, Effects of aluminium doping on structural and photoluminescence properties of ZnO nanoparticles, Ceram. Int. 40 (2014) 4025–4031.

G. Srinet, P. Varshneya, R. Kumar, V. Sajal, P.K. Kulriya, M. Knobel, S.K. Sharma, Structural, optical and magnetic properties of Zn1-xCoxO prepared by the sol–gel route, Ceram. Int. 39 (2013) 6077–6085.

R.S. Zeferino, M.B. Flores, U. Pal, Photoluminescence and Raman scattering in Ag-doped ZnO nanoparticles, J. Appl. Phys. 109 (2011) 14308.

R.C. Pawar, H. Kim, C.S. Lee, Defect-controlled growth of ZnO nanostructures using its different zinc precursors and their application for effective photodegradation, Curr. Appl. Phys. 14 (2014) 621–629.

S. Yılmaz, İ. Polat, Y. Atasoy, E. Bacaksız, Structural, morphological, optical and electrical evolution of spray deposited ZnO rods co-doped with indium and sulphur atoms, J. Mater. Sci. Mater. Electron. 25 (2014) 1810–1816.

A.C. Aragonès, A. Palacios-Padrós, F. Caballero-Briones, F. Sanz, Study and improvement of aluminium doped ZnO thin films: Limits and advantages, Electrochim. Acta. 109 (2013) 117–124.

V.D. Novruzov, E.F. Keskenler, M. Tomakin, S. Kahraman, O. Gorur, Effects of ultraviolet light on B-doped CdS thin films prepared by spray pyrolysis method using perfume atomizer, Appl. Surf. Sci. 280 (2013) 318– 324.

M.A. Redwan, L.I. Soliman, E.H. Aly, A.A. El-Shazely, H.A. Zayed, Study of electrical and optical properties of Cd1 − xZnxS thin films, J. Mater. Sci. 38 (2003) 3449–3454.

H. Chavez, M. Jordan, J.C. McClure, G. Lush, V.P. Singh, Physical and electrical characterization of CdS films deposited by vacuum evaporation, solution growth and spray pyrolysis, J. Mater. Sci. Mater. Electron. 8 (1997) 151–154.

R. Mariappan, V. Ponnuswamy, M. Ragavendar, Influence of molar concentration on the physical properties of nebulizer-sprayed ZnO thin films for ammonia gas sensor, Mater. Sci. Semicond. Process. 16 (2013) 1328–1335.

C. Manoharan, S. Dhanapandian, A. Arunachalam, M. Bououdina, Physical properties of spray pyrolysized nano flower ZnO thin films, J. Alloys Compd. 685 (2016) 395–401.

M. Jlassi, I. Sta, M. Hajji, H. Ezzaouia, Effect of nickel doping on physical properties of zinc oxide thin films prepared by the spray pyrolysis method, Appl. Surf. Sci. 301 (2014) 216–224.

A. Zhong, J. Tana, H. Huang, S. Chen, M. Wang, S. Xu, Thickness effect on the evolution of morphology and optical properties of ZnO films, Appl. Surf. Sci. 257 (2011) 4051–4055.

K.V. Gurav, U.M. Patil, S.M. Pawar, J.H. Kim, C.D. Lokhande, Controlled crystallite orientation in ZnO nanorods prepared by chemical bath deposition: Effect of H2O2, J. Alloys Compd. 509 (2011) 7723– 7728.

K. Ravichandran, N. Dineshbabu, T. Arun, C. Ravidhas, S. Valanarasu, Effect of fluorine (an anionic dopant) on transparent conducting properties of Sb (a cationic) doped ZnO thin films deposited using a simplified spray technique, Mater. Res. Bull. 83 (2016) 442–452.

Copyright (c) 2017 Turkish Journal of Materials

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.